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Abstract

Establishing convergent semantics for weighted argumenta-
tion graphs is a long-standing fundamental issue. Particu-
larly, it is challenging to develop convergent semantics for
weighted bipolar argumentation graphs (wBAG), which in-
clude both support and attack relations on weighted argu-
ments. Existing semantics in the literature are not general
enough in the sense that they only apply to acyclic graphs
or special cyclic cases. In this paper, we provide an eleg-
ant solution to this issue by adopting the so-called bilateral
gradual semantics, so that the strength of arguments can be
defined as the limits of iterative functions that always con-
verge for any wBAG including cyclic ones. A preliminary
experimental analysis shows that our semantics appear quite
efficient in calculating argument strength. Overall, this paper
offers a solid and promising foundation for weighted bipolar
argumentation in theoretical and practical aspects.

Introduction
An argumentation graph is a computational model for
reasoning and decision-making in complex environments
(Dung 1995; Amgoud and Prade 2009; Atkinson et al.
2017). In recent years, establishing convergent semantics
has emerged as a compelling and influential approach for
evaluating weighted arguments (Gabbay and Rodrigues
2015; Amgoud, Doder, and Vesic 2022; Besnard and Hunter
2001; Prakken 2024). The basic idea is to introduce iter-
ative functions that take graphs as inputs and produce se-
quences of values that eventually converge. The final value
assigned to arguments is called the strength or acceptabil-
ity degree. This approach has numerous applications such
as belief revision (da Costa Pereira, Tettamanzi, and Villata
2011), social network (Leite and Martins 2011), explainab-
ility (Potyka 2021), etc.

Weighted bipolar argumentation graphs (wBAG) con-
sider both support and attack relations on weighted ar-
guments. Such bipolar graphs have received extensive at-
tention due to their versatile expressive power (Amgoud
et al. 2008; Cayrol and Lagasquie-Schiex 2005; Polberg
and Hunter 2018), with applications spanning engineering
design (Baroni et al. 2015), polling (Rago and Toni 2017),
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review aggregation (Rago et al. 2025), etc. However, devel-
oping convergent semantics for wBAG has long been chal-
lenging. Most semantics in the literature fail to converge in
cyclic graphs (Evripidou and Toni 2014; Baroni et al. 2015;
Rago et al. 2016; Amgoud and Ben-Naim 2018b; Potyka
2021; Doder, Vesic, and Croitoru 2021; Rago et al. 2024).
The only exception (Mossakowski and Neuhaus 2018) intro-
duces a restricted semantics that considers only the strongest
supporter and attacker, which is less open-minded (Potyka
2019a,b). As pointed out in (Amgoud and Ben-Naim 2018b;
Potyka 2018; Potyka and Booth 2024b; Yin, Potyka, and
Toni 2024), an urgent task is to define semantics that are
capable of dealing with any typology of graphs including
cyclic ones.

To address this issue, we adopt the so-called bilateral
gradual semantics (Wang and Shen 2024) for wBAG, where
each argument is assigned two degrees—acceptability and
rejectability—to capture both the positive and negative
strength, reflecting a common cognitive evaluation pro-
cess (Cacioppo, Gardner, and Berntson 1997). Naturally,
the support and attack relations are separately measured
through the acceptability and rejectability degrees in wBAG.
This philosophy robustly leads to convergent semantics
through iterative functions, laying a solid foundation for
well-behaved wBAG semantics.

Towards this end, we first investigate the principles for
well-behaved wBAG semantics. We incorporate widely-
adopted principles from unipolar support graphs (Amgoud
and Ben-Naim 2016), unipolar attack graphs (Amgoud et al.
2017), and bipolar graphs (Amgoud and Ben-Naim 2018b).
Particularly, we include three notable principles—Quality
Precedence, Cardinality Precedence and Compensation—
which are known for developing semantics for unipolar
graphs, yet to the best of our knowledge, have never been
studied for bipolar graphs. Accordingly, we propose three
convergent semantics, each defined as the limit of iterat-
ive functions that always converge for any wBAG includ-
ing cyclic ones. Each semantics corresponds to one of the
above three notable principles and satisfies most widely ad-
opted principles. A preliminary experimental analysis shows
that the performance of our semantics appears quite efficient
concerning the number of iterations and the running time for
calculating argument strength.

This paper is organized as follows. We first introduce



basic concepts concerning wBAG and bilateral gradual se-
mantics. Next, we illustrate desirable principles for wBAG
semantics and study their interrelation. Then we present our
main contribution, i.e., three wBAG semantics that converge
for arbitrary graphs including cyclic ones. Satisfied prin-
ciples are summarized in Table 2 and preliminary experi-
mental results are depicted in Figure 1. The paper ends with
a discussion and conclusion.

Preliminaries
A weighted bipolar argumentation graph consists of support
and attack relations on a set of arguments. Each argument is
assigned a basic weight from the real interval [0, 1].
Definition 1 (wBAG). A weighted bipolar argumentation
graph (wBAG) is a quadruple G = ⟨A, w, S,R⟩, where A
is a non-empty finite set of arguments, w is a function from
A to [0, 1], S ⊆ A×A and R ⊆ A×A.

Given two arguments a, b ∈ A, (a, b) ∈ S means a sup-
ports b and (a, b) ∈ R means a attacks b. By w(a) we denote
the basic weight of a, which may represent various measures
such as trustworthiness (da Costa Pereira, Tettamanzi, and
Villata 2011), votes (Leite and Martins 2011), probability of
beliefs (Hunter 2013), etc.

In this paper, arguments are evaluated through the bilat-
eral gradual semantics which assigns each argument an ac-
ceptability degree and a rejectability degree.
Definition 2 (Bilateral gradual semantics). A bilateral
gradual semantics is a function S transforming G =
⟨A, w, S,R⟩ to a function DegSG defined from A to [0, 1] ×
[0, 1]. For any a ∈ A, DegSG(a) = (σ+

G(a), σ−
G(a)) where

σ+
G(a) and σ−

G(a) represent the acceptability and rejectab-
ility degrees of a respectively.

When the context is clear, we simply write Deg (resp. σ+,
σ−) instead of DegSG (resp. σ+

G, σ−
G). Below, we present

some notations used in the paper. Let G = ⟨A, w, S,R⟩ and
a ∈ A. SupG(a) denotes the set of all supporters of a, i.e.,
SupG(a) = {b ∈ A | (b, a) ∈ S}. AttG(a) denotes the set
of all attackers of a, i.e., AttG(a) = {b ∈ A | (b, a) ∈ R}.
We say that a is non-supported if SupG(a) = ∅ and non-
attacked if AttG(a) = ∅. We may abbreviate AttG(a) as
Att(a) and SupG(a) as Sup(a). For G = ⟨A, w, S,R⟩ and
G′ = ⟨A′, w′, S′, R′⟩ s.t. A∩A′ = ∅, we define G⊕G′ =
⟨A ∪ A′, w∗, S ∪ S′, R ∪ R′⟩ where for any a ∈ A (resp.
a ∈ A′), w∗(a) = w(a) (resp. w∗(a) = w′(a)).

Principles
Principles represent a set of desirable properties that se-
mantics usually need to satisfy in practical applications,
serving as a guideline for exploring semantics. Numerous
studies have investigated the principles that consider only
the acceptability degree (Amgoud and Ben-Naim 2018a;
Baroni, Rago, and Toni 2018, 2019; Amgoud, Doder, and
Vesic 2022; Bonzon et al. 2016). Principles for bilateral
gradual semantics in unipolar attack graphs were proposed
in (Wang and Shen 2024). Based on this bilateral philo-
sophy, we study the principles that simultaneously take into
account the acceptability and rejectability degrees in wBAG.

We provide a total of 23 principles, which integrate and
adapt the well-established principles from unipolar sup-
port graphs (Amgoud and Ben-Naim 2016), unipolar attack
graphs (Amgoud et al. 2017), and bipolar graphs (Amgoud
and Ben-Naim 2018b). Some principles are basic ones, e.g.,
Anonymity, Resilience, Proportionality. There is also a set
of symmetric principles that consider how supporters and
attackers respectively influence the acceptability and reject-
ability degrees of arguments, e.g., A-Counting, R-Counting,
A-Reinforcement, R-Reinforcement. We also incorporate
three notable principles—Quality Precedence, Cardinality
Precedence and Compensation—which serve as strategies
for defining semantics in unipolar graphs, yet have never
been studied in bipolar graphs.

Table 1 illustrates the sources of acceptability and reject-
ability degrees. Intuitively, the former is determined by sup-
porters and basic weight, while the latter is solely determ-
ined by attackers. Such a bilateral and non-reciprocal setting
originates from (Wang and Shen 2024) for unipolar graphs.
Here we lift the idea for bipolar graphs, and this turns out to
be a cornerstone for developing convergent semantics.

Degree Source
• basic weight

acceptability • acceptability degree of supporters
• rejectability degree of supporters

rejectability • acceptability degree of attackers
• rejectability degree of attackers

Table 1: Sources of acceptability and rejectability degrees

The notions of Isomorphism and Path will be used to es-
tablish principles.

Definition 3 (Isomorphism). Consider G = ⟨A, w, S,R⟩
and G′ = ⟨A′, w′, S′, R′⟩. An isomorphism from G to G′

is a bijective function f from A to A′ s.t. (i) ∀a ∈ A, w(a) =
w′(f(a)), (ii) ∀a, b ∈ A, (a, b) ∈ S iff (f(a), f(b)) ∈ S′,
(iii) ∀a, b ∈ A, (a, b) ∈ R iff (f(a), f(b)) ∈ R′.

Definition 4 (Path). We say that there is a path from a1
to an iff there is a sequence consisting of {a1, ..., an} s.t.
(ai, ai+1) ∈ R ∪ S for any i ∈ {1, ..., n− 1}.

Anonymity. The acceptability and rejectability degrees of
an argument are independent of its identity. Formally:
(1) For any G = ⟨A, w, S,R⟩ and G′ = ⟨A′, w′, S′, R′⟩,
for any isomorphism f from G to G′, we have ∀a ∈ A,
σ+
G(a) = σ+

G′(f(a)), σ−
G(a) = σ−

G′(f(a)).
Independence. The acceptability and rejectability degrees
of an argument should be independent of any argument that
is not connected to it.
(2) For any G = ⟨A, w, S,R⟩ and G′ = ⟨A′, w′, S′, R′⟩
s.t. A ∩ A′ = ∅, we have ∀a ∈ A, σ+

G(a) = σ+
G′⊕G(a),

σ−
G(a) = σ−

G′⊕G(a).
Directionality. The acceptability and rejectability degrees
of an argument a depend on argument b only if there is a
path from b to a.



(3) For any G = ⟨A, w, S,R⟩ and G′ = ⟨A, w, S′, R′⟩ s.t.
S ⊆ S′, R ⊆ R′, R′ ∪ S′ = R ∪ S ∪ {(a, b)}, ∀x ∈
A, if there is no path from b to x, then σ+

G(x) = σ+
G′(x),

σ−
G(x) = σ−

G′(x).
Equivalence. The acceptability degree of an argument only
depends on the acceptability and rejectability degrees of its
supporters, as well as its basic weight; (ii) The rejectability
degree only depends on the acceptability and rejectability
degrees of its attackers.
(4) For any G = ⟨A, w, S,R⟩, ∀a, b ∈ A,
• if w(a) = w(b), and there exists a bijective function
f from Sup(a) to Sup(b) s.t. ∀x ∈ Sup(a), σ+(x) =
σ+(f(x)), σ−(x) = σ−(f(x)), then σ+

G(a) = σ+
G(b);

• if there exists a bijective function f ′ from Att(a) to
Att(b) s.t. ∀x ∈ Att(a), σ+(x) = σ+(f ′(x)), σ−(x) =
σ−(f ′(x)), then σ−

G(a) = σ−
G(b).

Resilience. If the basic weight of an argument lies in (0, 1),
then its acceptability degree also lies in (0, 1).
(5) If 0 < w(a) < 1, then 0 < σ+(a) < 1.
Proportionality. The higher the basic weight of an argu-
ment, the higher its acceptability degree.
(6) If (i) w(a) < w(b), (ii) σ+(a) < 1 or σ+(b) < 1, and
(iii) Sup(a) = Sup(b), then σ+(a) < σ+(b).

The following principles consider how supporters and at-
tackers respectively determine the acceptability and reject-
ability degrees of arguments. We say an argument a is worth-
less if σ+(a) = 0 and alive if σ+(a) > 0.
A-Neutrality. A worthless supporter has no impact on the
acceptability degree of the supported argument.
(7) If (i) w(a) = w(b), (ii) Sup(a) = Sup(b) \ {x} with
x ∈ Sup(b), (iii) σ+(x) = 0, then σ+(a) = σ+(b).
R-Neutrality. A worthless attacker has no impact on the re-
jectability degree of the attacked argument.
(8) If (i) Att(a) = Att(b) \ {x} with x ∈ Att(b), (ii)
σ+(x) = 0, then σ−(a) = σ−(b).
A-Stability. The acceptability degree of a non-supported ar-
gument is equal to its basic weight.
(9) If Sup(a) = ∅, then σ+

G(a) = w(a).
R-Stability. The rejectability degree of a non-attacked argu-
ment is 0.
(10) If Att(a) = ∅, then σ−

G(a) = 0.
A-Strengthening. An alive supporter strengthens the ac-
ceptability degree of an argument to be greater than its basic
weight.
(11) If w(a) < 1 and ∃b ∈ Sup(a) s.t. σ+(b) > 0, then
σ+(a) > w(a).
R-Strengthening. An alive attacker strengthens the reject-
ability degree of an argument to be greater than 0.
(12) If ∃b ∈ Att(a) s.t. σ+(b) > 0, then σ−(a) > 0.

Example 1. A wBAG where dashed arrows represent sup-
ports and solid arrows represent attacks. Arguments x, a, y
are assigned with basic weights 0.6, 0.5, 0.8 respectively.

a : 0.5x : 0.6 y : 0.8

Assume a semantics satisfies A-Stability and R-Stability.
Then σ+(x) = 0.6, σ+(y) = 0.8, and σ−(x) = σ−(y) = 0.
By A-Strengthening and R-Strengthening, we have σ+(a) >
0.5 and σ−(a) > 0.
A-Strengthening Soundness. Alive supporters are the only
source of obtaining the acceptability degree.
(13) If w(a) < 1 and σ+(a) > w(a), then ∃b ∈ Sup(a) s.t.
σ+(b) > 0.
R-Strengthening Soundness. Alive attackers are the only
source of obtaining the rejectability degree.
(14) If σ−(a) > 0, then ∃b ∈ Att(a) s.t. σ+(b) > 0.

The following two principles claim that each alive argu-
ment has an impact on the arguments it attacks or supports.
A-Counting. Adding an alive supporter leads to an increase
in the acceptability degree of the supported argument.
(15) If (i) w(a) = w(b), (ii) σ+(a) < 1 or σ+(b) < 1, (iii)
Sup(a) = Sup(b) \ {x} with x ∈ Sup(b), (iv) σ+(x) > 0,
then σ+(a) < σ+(b).
R-Counting. Adding an alive attacker leads to an increase
in the rejectability degree of the attacked argument.
(16) If (i) σ−(a) < 1 or σ−(b) < 1, (ii) Att(a) = Att(b) \
{x} with x ∈ Att(b), (iii) σ+(x) > 0, then σ−(a) < σ−(b).

Intuitively, the higher the acceptability degree, the
stronger the impact of the argument.
A-Reinforcement. Increasing a supporter’s acceptability
degree leads to an increase in the acceptability degree of the
supported argument.
(17) If (i) w(a) = w(b), (ii) σ+(a) < 1 or σ+(b) < 1,
(iii) Sup(a) \ {x} = Sup(b) \ {y} with x ∈ Sup(a) and
y ∈ Sup(b), (iv) σ+(x) < σ+(y) and σ−(x) = σ−(y), then
σ+(a) < σ+(b).
R-Reinforcement. Increasing an attacker’s acceptability de-
gree leads to an increase in the rejectability degree of the
attacked argument.
(18) If (i) σ−(a) < 1 or σ−(b) < 1, (ii) Att(a) \ {x} =
Att(b)\{y} with x ∈ Att(a) and y ∈ Att(b), (iii) σ+(x) <
σ+(y) and σ−(x) = σ−(y), then σ−(a) < σ−(b).

Naturally, the higher the rejectability degree, the weaker
the impact of the argument.
A-Weakened Defense. Increasing a supporter’s rejectability
degree leads to a decrease in the acceptability degree of the
supported argument.
(19) If (i) w(a) = w(b), (ii) σ+(a) < 1 or σ+(b) < 1,
(iii) Sup(a) \ {x} = Sup(b) \ {y} with x ∈ Sup(a) and
y ∈ Sup(b), (iv) σ−(x) < σ−(y) and σ+(x) = σ+(y) > 0,
then σ+(a) > σ+(b).
R-Weakened Defense. Increasing an attacker’s rejectability
degree leads to a decrease in the rejectability degree of the
attacked argument.
(20) If (i) σ−(a) < 1 or σ−(b) < 1, (ii) Att(a) \ {x} =
Att(b)\{y} with x ∈ Att(a) and y ∈ Att(b), (iii) σ−(x) <
σ−(y) and σ+(x) = σ+(y) > 0, then σ−(a) > σ−(b).

The last three notable principles correspond to three
strategies to deal with the precedence of the quality, quantity
or compromise of supporters and attackers.
Quality Precedence (QP) prioritizes the quality of sup-
porters and attackers. It focuses on the strongest supporter



and attacker, which have both the highest acceptability and
lowest rejectability degree. In words: (i) the stronger the
strongest supporter of an argument, the higher its accept-
ability, and (ii) the stronger the strongest attacker of an ar-
gument, the higher its rejectability.
(21) For any G = ⟨A, w, S,R⟩, ∀a, b ∈ A,
• if (i) w(a) = w(b), (ii) σ+(a) < 1 or σ+(b) < 1, (iii)
∃y ∈ Sup(b) s.t. ∀x ∈ Sup(a), σ+(x) < σ+(y) and
σ−(x) > σ−(y), then σ+(a) < σ+(b);

• if (i) σ−(a) < 1 or σ−(b) < 1, (ii) ∃y ∈ Att(b) s.t.
∀x ∈ Att(a), σ+(x) < σ+(y) and σ−(x) > σ−(y),
then σ−(a) < σ−(b).

Cardinality Precedence (CP) prioritizes the quantity of
supporters and attackers. In words: (i) the greater the number
of alive supporters of an argument, the higher its acceptab-
ility, and (ii) the greater the number of alive attackers of an
argument, the higher its rejectability.
(22) For any G = ⟨A, w, S,R⟩, ∀a, b ∈ A,
• if (i) w(a) = w(b), (ii) σ+(a) < 1 or σ+(b) < 1, (iii)
|{x ∈ Sup(a)|σ+(x) > 0}| < |{y ∈ Sup(b)|σ+(y) >
0}|, then σ+(a) < σ+(b);

• if (i) σ−(a) < 1 or σ−(b) < 1, (ii) |{x ∈
Att(a)|σ+(x) > 0}| < |{y ∈ Att(b)|σ+(y) > 0}|,
then σ−(a) < σ−(b).

Compensation is a kind of compromise that considers both
the quality and quantity of attackers and supporters. It says
that several weak supporters/attackers may compensate one
strong supporter/attacker.
(23) There exists a wBAG G = ⟨A, w, S,R⟩ such that
• ∃a, b ∈ A s.t. (i) w(a) = w(b), (ii) σ+(a) < 1 or
σ+(b) < 1, (iii) ∃y ∈ Sup(b) s.t. ∀x ∈ Sup(a),
σ+(x) < σ+(y) and σ−(x) > σ−(y), (iv) |{x ∈
Sup(a)|σ+(x) > 0}| > |{y ∈ Sup(b)|σ+(y) > 0}|,
(v) σ+(a) = σ+(b);

• ∃a, b ∈ A s.t. (i) σ−(a) < 1 or σ−(b) < 1, (ii)
∃y ∈ Att(b) s.t. ∀x ∈ Att(a), σ+(x) < σ+(y) and
σ−(x) > σ−(y), (iii) |{x ∈ Att(a)|σ+(x) > 0}| >
|{y ∈ Att(b)|σ+(y) > 0}|, (iv) σ−(a) = σ−(b).

Formal Analysis of Principles
In this section, we provide a formal analysis of principles.
We first present some links between principles.
Proposition 1. The following properties hold:
1. A-Stability, R-Stability, R-Strengthening, QP and CP are

incompatible.
2. Compensation is not compatible with QP or CP.
3. CP (resp. Compensation) is compatible with principles

(1)-(20).
Proposition 2. Let S be a semantics which satisfies Inde-
pendence, Directionality and Equivalence. Then:
1. If S satisfies A-Stability, A-Neutrality, then it also satis-

fies A-Strengthening Soundness.
2. If S satisfies R-Stability, R-Neutrality, then it also satis-

fies R-Strengthening Soundness.

3. If S satisfies A-Stability, A-Neutrality, A-Reinforcement,
then it also satisfies A-Counting and A-Strengthening.

4. If S satisfies A-Stability, R-Neutrality, R-Reinforcement,
then it also satisfies R-Counting and R-Strengthening.

Next, we study the behavior of semantics under some
specified principles. To begin, we show that a set of argu-
ments that are not supported or attacked by any other ar-
guments keeps their acceptability and rejectability degrees
unchanged in any graph, whenever the semantics satisfies
Independence and Directionality.

Proposition 3. If a semantics S satisfies Independence and
Directionality, then for any G = ⟨A, w, S,R⟩ and G′ =
⟨A′, w′, S′, R′⟩ such that A ⊆ A′, w(a) = w′(a) for all
a ∈ A, S′ ∩ (A′ × A) = S and R′ ∩ (A′ × A) = R, it
follows that σ+

G(a) = σ+
G′(a) and σ−

G(a) = σ−
G′(a) for all

a ∈ A.

If an argument is only supported by worthless argu-
ments, then its acceptability degree equals its basic weight,
whenever the semantics satisfies Independence, Directional-
ity, Equivalence, A-Stability and A-Neutrality.

Proposition 4. Let S be a semantics which satisfies Inde-
pendence, Directionality, Equivalence, A-Stability and A-
Neutrality. Then for any G = ⟨A, w, S,R⟩, ∀a ∈ A, if for
any x ∈ Sup(a), σ+(x) = 0, then σ+(a) = w(a).

If an argument is only attacked by worthless arguments,
then its rejectability degree is 0, whenever the semantics sat-
isfies Independence, Directionality, Equivalence, R-Stability
and R-Neutrality.

Proposition 5. Let S be a semantics which satisfies Inde-
pendence, Directionality, Equivalence, R-Stability and R-
Neutrality. Then for any G = ⟨A, w, S,R⟩, ∀a ∈ A, if for
any x ∈ Att(a), σ+(x) = 0, then σ−(a) = 0.

If a semantics satisfies Independence, Directionality,
Equivalence, Proportionality, A-Neutrality, A-Stability and
A-Strengthening, then the lower bound of the acceptability
degree is equal to the basic weight.

Proposition 6. Let S be a semantics which satisfies Inde-
pendence, Directionality, Equivalence, Proportionality, A-
Neutrality, A-Stability and A-Strengthening. Then for any
G = ⟨A, w, S,R⟩, ∀a ∈ A, σ+(a) ∈ [w(a), 1].

Convergent Semantics and their Properties
In this section, we propose three convergent semantics for
wBAG, each corresponding to one of QP, CP and Compens-
ation. We develop semantics based on the well-studied h-
categorizer function family (Besnard and Hunter 2001; Pu
et al. 2014; Amgoud, Doder, and Vesic 2022). The resulting
functions produce iterative sequences that always converge
for any wBAG including cyclic ones.

Quality-Based Semantics
The quality-based semantics (QBS) prioritizes the quality of
supporters and attackers, i.e., satisfies Quality Precedence.



Definition 5. Let G = ⟨A, w, S,R⟩. For any a ∈ A,
the iterative sequence {F i(a)}i∈N is defined by F i(a) =
(f i(a), gi(a)) where f i, gi : A → [0, 1] are:

f0(a) = w(a), g0(a) = 0;

For any i ≥ 0,

f i+1(a) = w(a) + (1− w(a))

max
b∈Sup(a)

hi(b)

1 + max
b∈Sup(a)

hi(b)

gi+1(a) =

max
b∈Att(a)

hi(b)

1 + max
b∈Att(a)

hi(b)
with hi(b) =

f i(b)

1 + gi(b)
.

By convention, maxb∈Sup(a) h
i(b) = 0 if Sup(a) = ∅ and

maxb∈Att(a) h
i(b) = 0 if Att(a) = ∅.

Theorem 1 (QBS Convergence). For any a ∈ A, the se-
quence {F i(a)}i∈N converges as i approaches infinity.

The quality-based semantics is defined through the limit
of the above iterative sequence.

Definition 6 (QBS). The quality-based semantics is a func-
tion QBS transforming any G = ⟨A, w, S,R⟩ into a func-
tion DegQBS

G defined from A to [0, 1] × [0, 1] s.t. ∀a ∈ A,
DegQBS

G (a) = (σ+(a), σ−(a)) where σ+(a) = lim
i→∞

f i(a),

σ−(a) = lim
i→∞

gi(a).

Theorem 2 states that the acceptability and rejectability
degrees assigned by QBS can be nicely described by the fol-
lowing equations.

Theorem 2. Let G = ⟨A, w, S,R⟩. Then for any a ∈ A
under QBS, we have:

σ+(a) = w(a) + (1− w(a))

max
b∈Sup(a)

h(b)

1 + max
b∈Sup(a)

h(b)

σ−(a) =

max
b∈Att(a)

h(b)

1 + max
b∈Att(a)

h(b)
with h(b) =

σ+(b)

1 + σ−(b)
.

Theorem 3 states that QBS is the unique function that sat-
isfies the above equations.

Theorem 3. Let G = ⟨A, w, S,R⟩ and D : A →
[0, 1] × [0, 1] be a function. If for any a ∈ A, D(a) =
(D+(a),D−(a)) satisfies

D+(a) = w(a) + (1− w(a))

max
b∈Sup(a)

h′(b)

1 + max
b∈Sup(a)

h′(b)

D−(a) =

max
b∈Att(a)

h′(b)

1 + max
b∈Att(a)

h′(b)
with h′(b) =

D+(b)

1 + D−(b)
,

then D = DegQBS
G .

Since QBS focuses on the strongest supporter
and attacker, it violates A-Counting, R-Counting, A-
Reinforcement, R-Reinforcement, A-Weakened Defense,
and R-Weakened Defense. In fact, it satisfies the rest
principles that are compatible with QP.

Theorem 4. QBS violates A-Counting, R-Counting, A-
Reinforcement, R-Reinforcement, A-Weakened Defense, R-
Weakened Defense, CP and Compensation. It satisfies all the
remaining principles.

Cardinality-Based Semantics
The cardinality-based semantics (CBS) prioritizes the
quantity of supporters and attackers, i.e., satisfies Cardinal-
ity Precedence. The iterative function below considers only
the founded supporters/attackers whose previous values of
the function f are greater than 0.

Definition 7. Let G = ⟨A, w, S,R⟩. For any a ∈ A,
the iterative sequence {F i(a)}i∈N is defined by F i(a) =
(f i(a), gi(a)) where f i, gi : A → [0, 1] are:

f0(a) = w(a), g0(a) = 0;

For any i ≥ 0,

f i+1(a) = w(a) + (1− w(a))
|FSi(a)|+

∑
b∈FSi(a)

hi(b)

|FSi(a)|

1 + |FSi(a)|+

∑
b∈FSi(a)

hi(b)

|FSi(a)|

gi+1(a) =
|FAi(a)|+

∑
b∈FAi(a)

hi(b)

|FAi(a)|

1 + |FAi(a)|+

∑
b∈FAi(a)

hi(b)

|FAi(a)|

,

in which hi(b) = fi(b)
1+gi(b) , FSi(a) = {b ∈ Sup(a)|f i(b) >

0} and FAi(a) = {b ∈ Att(a)|f i(b) > 0}. We stipulate that∑
b∈FSi(a) h

i(b)

|FSi(a)| = 0 if FSi(a) = ∅ and
∑

b∈FAi(a) h
i(b)

|FAi(a)| = 0

if FAi(a) = ∅.

Intuitively, FSi(a) (resp. FAi(a)) denotes the set of foun-
ded supporters (resp. attackers) in the i-th iteration.

Theorem 5 (CBS Convergence). For any a ∈ A, the se-
quence {F i(a)}i∈N converges as i approaches infinity.

The cardinality-based semantics is defined through the
limit of the above iterative sequence.

Definition 8 (CBS). The cardinality-based semantics is a
function CBS transforming any wBAG G = ⟨A, w, S,R⟩
into a function DegCBS

G defined from A to [0, 1] × [0, 1] s.t.
∀a ∈ A, DegCBS

G (a) = (σ+(a), σ−(a)) where σ+(a) =
lim
i→∞

f i(a), σ−(a) = lim
i→∞

gi(a).

Theorem 6 states that the acceptability and rejectability
degrees assigned by CBS can be nicely described by the fol-
lowing equations.



Theorem 6. Let G = ⟨A, w, S,R⟩. Then for any a ∈ A
under CBS, we have:

σ+(a) = w(a) + (1− w(a))
|FS(a)|+

∑
b∈FS(a)

h(b)

|FS(a)|

1 + |FS(a)|+

∑
b∈FS(a)

h(b)

|FS(a)|

σ−(a) =
|FA(a)|+

∑
b∈FA(a)

h(b)

|FA(a)|

1 + |FA(a)|+

∑
b∈FA(a)

h(b)

|FA(a)|

with h(b) =
σ+(b)

1 + σ−(b)
,

FS(a) = {b ∈ Sup(a)|σ+(b) > 0} and FA(a) = {b ∈
Att(a)|σ+(b) > 0}.

Similar to Theorem 3, Theorem 7 states that CBS is the
unique function satisfying the above equations.

Theorem 7. Let G = ⟨A, w, S,R⟩ and D : A →
[0, 1] × [0, 1] be a function. If for any a ∈ A,
D(a) = (D+(a),D−(a)) satisfies the corresponding equa-
tions presented in Theorem 6. Then D = DegCBS

G .

CBS satisfies all the principles that are compatible with
CP, stated as below.

Theorem 8. CBS satisfies all the principles except QP and
Compensation.

Hybrid-Based Semantics
The hybrid-based semantics (HBS) satisfies Compensation,
taking both the quality and quantity into account.

Definition 9. Let G = ⟨A, w, S,R⟩. For any a ∈ A,
the iterative sequence {F i(a)}i∈N is defined by F i(a) =
(f i(a), gi(a)) where f i, gi : A → [0, 1] are as follows:

f0(a) = w(a), g0(a) = 0;

For any i ≥ 0,

f i+1(a) = w(a) + (1− w(a))

|FSi(a)|+
∑

b∈FSi(a)

hi(b)

1 + |FSi(a)|+
∑

b∈FSi(a)

hi(b)

gi+1(a) =

|FAi(a)|+
∑

b∈FAi(a)

hi(b)

1 + |FAi(a)|+
∑

b∈FAi(a)

hi(b)
,

in which hi(b) = fi(b)
1+gi(b) , FSi(a) = {b ∈ Sup(a)|f i(b) >

0} and FAi(a) = {b ∈ Att(a)|f i(b) > 0}. We stip-
ulate that

∑
b∈FSi(a) h

i(b) = 0 if FSi(a) = ∅ and∑
b∈FAi(a) h

i(b) = 0 if FAi(a) = ∅.

Theorem 9 (HBS Convergence). For any a ∈ A, the se-
quence {F i(a)}i∈N converges as i approaches infinity.

The hybrid-based semantics is defined through the limit
of the above iterative sequence.

Definition 10 (HBS). The hybrid-based semantics is a func-
tion HBS transforming any wBAG G = ⟨A, w, S,R⟩ into a

function DegHBS
G defined from A to [0, 1]×[0, 1] s.t. ∀a ∈ A,

DegHBS
G (a) = (σ+(a), σ−(a)) where σ+(a) = lim

i→∞
f i(a),

σ−(a) = lim
i→∞

gi(a).

Theorem 10 states that the acceptability and rejectability
degrees assigned by HBS can be nicely described by the fol-
lowing equations.
Theorem 10. Let G = ⟨A, w, S,R⟩. Then for any a ∈ A
under HBS, we have:

σ+(a) = w(a) + (1− w(a))

|FS(a)|+
∑

b∈FS(a)

h(b)

1 + |FS(a)|+
∑

b∈FS(a)

h(b)

σ−(a) =

|FA(a)|+
∑

b∈FA(a)

h(b)

1 + |FA(a)|+
∑

b∈FA(a)

h(b)
with h(b) =

σ+(b)

1 + σ−(b)
,

FS(a) = {b ∈ Sup(a)|σ+(b) > 0} and FA(a) = {b ∈
Att(a)|σ+(b) > 0}.

Similar to Theorem 3 and Theorem 7, Theorem 11 states
that HBS is the unique function that satisfies the above equa-
tions.
Theorem 11. Let G = ⟨A, w, S,R⟩ and D : A →
[0, 1] × [0, 1] be a function. If for any a ∈ A,
D(a) = (D+(a),D−(a)) satisfies the corresponding equa-
tions presented in Theorem 10, then D = DegHBS

G .
HBS satisfies all the principles that are compatible with

Compensation, stated as below.
Theorem 12. HBS satisfies all the principles except QP and
CP.

Comparisons for principles under QBS, CBS and HBS are
summarized in Table 2.

QBS CBS HBS
Principles (1)-(14) • • •

A-Counting – • •
R-Counting – • •

A-Reinforcement – • •
R-Reinforcement – • •

A-Weakened Defense – • •
R-Weakened Defense – • •
Quality Precedence • – –

Cardinality Precedence – • –
Compensation – – •

Table 2: Principles under QBS, CBS and HBS

Example 2. Consider the wBAG G depicted below.

a : 0.5

x : 0.8

y : 1.0

p : 0.8

q : 1.0



The strength of the argument a converges approximately
as follows: DegQBS

G (a) ≈ (0.750, 0.424), DegCBS
G (a) ≈

(0.874, 0.720), and DegHBS
G (a) ≈ (0.899, 0.757).

Preliminary Experimental Analysis
We implemented our three novel semantics in Python and
conducted preliminary experiments on the wBAG bench-
mark from (Potyka 2018). The benchmark1 consists of 30
randomly generated (RG) datasets, each containing 100
graphs. The number of dataset arguments (i.e., graph size)
ranges from 100 to 3000, increasing by 100.

The experiments were run on a Windows 11 x64 laptop
with an Intel i7-11800H CPU (8 cores, 4.6 GHz) and 32 GB
of memory. Our evaluation criteria include the total running
time of a dataset and its minimal/maximal iterations. The
algorithm stops when the difference of values between suc-
cessive iterations < 0.0001 for each argument. All empirical
results are summarized in Figure 1.

Generally speaking, the total running time appears to
grow linearly in graph size and all semantics perform quite
efficiently. The average time for computing a graph of 3000
arguments under QBS/HBS/CBS ≈ 0.11s/0.10s/0.09s. Con-
cerning the number of min/max iterations in the experiment,
we observe that QBS usually takes more iterations to con-
verge than HBS and CBS. Even so, QBS only uses 13 steps
to converge in the worst case. Interestingly, the number of
min/max iterations under HBS, CBS and QBS seems to be
constant in graph size. A similar phenomenon is also men-
tioned in (Amgoud, Doder, and Vesic 2022). In addition, the
min/max iterations of HBS and CBS appear to largely over-
lap. To sum up, the preliminary experiments suggest that our
semantics perform rather efficiently and have potential for
real-world applications.
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Figure 1: Total Runtime and Min/Max Iterations on RG

1https://www.researchgate.net/publication/326557254

Discussion and Conclusion
The study of gradual semantics in wBAG has received ex-
tensive attention in the literature. Particularly, developing
convergent semantics for cyclic wBAG is challenging. Most
existing semantics are restricted to acyclic graphs, e.g., ES-
AAF (Evripidou and Toni 2014), QuAD (Baroni et al. 2015),
DF-QuAD (Rago et al. 2016), Euler (Amgoud and Ben-
Naim 2018b), MLP (Potyka 2021), and NPE (Doder, Vesic,
and Croitoru 2021). The only exception is the Max Euler-
based semantics (Mossakowski and Neuhaus 2018), which
simply focuses on the strongest supporter and attacker while
ignoring other arguments. This violates the so-called open-
mindedness (Potyka 2019a), i.e., the strength of arguments
cannot be far from their basic weights. In contrast, under our
CBS and HBS, adding sufficient supporters (resp. attackers)
leads to σ+ → 1 (resp. σ− → 1), which illustrates a form of
open-mindedness.

The investigation of convergence behavior is of signific-
ant interest. Some special cyclic cases have been proven
to converge under various semantics, typically by impos-
ing constraints on the indegrees or basic weights of ar-
guments (Mossakowski and Neuhaus 2018; Potyka 2021,
2019a; Potyka and Booth 2024a). Moreover, continuization
has emerged as a technique to improve the convergence be-
havior of semantics (Potyka 2018, 2019a; Potyka and Booth
2024b). This approach associates update functions with a
system of differential functions, and empirical studies have
shown that continuized semantics are effective in resolving
many divergence cases. However, their theoretical conver-
gence behavior remains largely unknown.

The existing methodologies to aggregate the strength of
supporters and attackers make it inherently difficult to ob-
tain convergent semantics, as their aggregation operators do
not always behave well during iterations. Particularly, in
computing cyclic graphs with intricate interactions, argu-
ment values may vary drastically, resulting in divergent be-
havior (Amgoud and Ben-Naim 2018b; Potyka 2019a; Mos-
sakowski and Neuhaus 2018; Potyka and Booth 2024a).

The paper elegantly addresses the challenge by adopt-
ing the bilateral gradual semantics, which offers a novel
perspective to separately evaluate supporters and attackers
through the acceptability and rejectability degrees. We first
presented a set of principles for well-behaved wBAG se-
mantics, and studied their relationships and properties. Then
we proposed three convergent semantics that conform to the
above principles. These semantics are defined through the
limits of the iterative functions that always converge for any
wBAG including cyclic ones, and perform efficiently on the
benchmark from the literature.

Future work can be considered in several directions. We
can investigate the computational complexity of convergent
functions and conduct more experiments to check scalabil-
ity. Additional desirable wBAG principles, such as mono-
tonicity (Baroni, Rago, and Toni 2019), duality (Potyka
2020) can be discussed. It would also be interesting to ag-
gregate σ+ and σ− to an overall strength for specific ap-
plications. Finally, applying wBAG to practical scenarios in-
volving cycles of supports and attacks—such as social media
debates and explainable AI—is a desirable endeavour.
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