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Abstract. Dung’s theory of abstract argumentation plays an incremen-
tal role in artificial intelligence. The research about the dynamics the-
ory of argumentation efficiently identifies the justified arguments when
arguments or attacks change. However, the dynamics theory is absent in
fuzzy argumentation framework (FAF). We want to calculate the seman-
tics of the updated FAF by partially reusing the semantics of the previ-
ous FAF. In this paper, we explore the dynamics theory in FAFs. First,
we introduce all the changes of FAF, including not only the changes of
arguments and attacks but also the increases or decreases of their fuzzy
degrees. Thus, the changes in FAFs are more complicated than standard
AF. Then by extending Liao’s division-based approach, we provide an
efficient algorithm for computing some basic semantics. This algorithm
conserves part of the semantics in the previous FAF. Thus, we can effi-
ciently compute the belief degree to which arguments are justified.

Keywords: Dynamics of argumentation · Division-based approach ·
Fuzzy argumentation frameworks · Argumentation semantics

1 Introduction

Dung’s theory [7] of argumentation frameworks (AFs) plays an increasingly
important role in artificial intelligence and nonmonotonic reasoning. A Dung’s
AF is essentially a directed graph. The nodes represent the arguments and the
arrows represent the attack relation between the arguments. Dung’s theory is to
seek reasonable subsets of the arguments under some criterions.

In order to handle the uncertain, incompleteness, and inconsistency of infor-
mation, standard AFs are extended by quantifying arguments or attacks. More
specifically, in these quantitative AFs, numerical values are combined with argu-
ments/attacks, such as probabilistic AFs [9,12], fuzzy AFs (FAFs) [5,10,15],
weighted AFs [8] and so on. FAFs characterize AFs by fuzzy arguments or fuzzy
attack relation. In [10,15], the main task of FAFs is to find the subsets over
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justified fuzzy arguments. The extension semantics to FAFs have been proposed
in [10,15]. Changes in arguments and attack relationships are intrinsic to vari-
ous argumentation systems [2,4,11]. According to some research, arguments and
their attack relation develop with the changes in basic knowledge or information
or observations [3,6,14]. In [4], Cayrol et al. address the problem of the change
of adding an argument in Dung’s AF. They focus on the change of the argumen-
tation systems and its extension. In [13], Liao et al. proposed a division-based
approach for dynamics of AFs. The division-based approach provides an efficient
algorithm for the dynamics of argumentation systems.

In quantitative AFs, the arguments and attack relation are also changed with
the changes of basic knowledge, information, and observations. However, the
research about the dynamics of quantitative AFs is absent. In this paper, we take
the Gödel FAFs (GFAFs) as an example to explore the dynamics of quantitative
AFs. However, the changes in the dynamics of FAFs are more complicated than
standard AF. This is because FAF is changed not only by adding (or removing)
arguments or attack relation but also by increasing (or decreasing) the belief
degree of arguments or attack relation.

The main task of this paper is to provide an efficient algorithm for basic
semantics in the updated FAF. We first establish the directionality principle
in FAFs. Then we extend the division-based approach, each updated FAF is
divided into three parts: unaffected FAF, affected FAF, conditioned FAF. We
then compute the extension semantics of the updated FAF by computing the
semantics of unaffected FAF and affected FAF under the conditioned FAF. In
this way, we can calculate the complete, preferred and grounded semantics which
partially reuses the extensions computed in the previous FAF.

This paper is structured as follows: In Sect. 2, we specify the motivation of the
dynamics of FAF. In Sect. 3, we review some basic definitions of FAF and fuzzy
set theory. In Sect. 4, we explore the various changes in the dynamics of FAFs.
In Sect. 5, we extend the division-based method into the dynamics of FAFs. The
paper ends with conclusions and remarks about future work.

2 Motivation

As we showed in the Introduction, changes in arguments and attack relationships
are intrinsic to various argumentation systems. And compared with standard
AFs, the dynamics of FAFs are more complicated. We first specify the intuition
of the dynamics of FAFs. To understand the dynamics of FAFs, we consider the
following example:

A patient goes to the hospital because of chest tightness. If we only make
an empirical judgment about the patient, there are two diseases that may cause
chest tightness: coronary heart disease and bronchitis. So we obtain two argu-
ments:

A: The patient’s chest tightness is caused by coronary heart disease;
B: The patient’s chest tightness is caused by bronchitis.
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Assuming that the patient’s chest tightness is not caused by these two dis-
eases at the same time. Thus these two arguments are contradictory. We can
establish an FAF and the initial belief degree of that the patient’s chest tight-
ness is caused by coronary heart disease is 0.4 and the initial belief degree of that
the patient’s chest tightness is caused by bronchitis is 0.6. If we do a preliminary
examination of the patient, the result of the examination shows that the patient
has bronchitis and has no history of coronary heart disease. Consequently, the
degree of A may naturally decrease and the degree of B may naturally increase,
one may change the system by decreasing the degree of A into 0.1 and increas-
ing the degree of B into 0.9. Therefore, in FAF, the change of initial degree of
arguments or attack relation also changes the system. In addition, if we take a
further examination of this patient, we have that patient suffers from cardiac
failure. We then change the systems by adding the fuzzy argument ‘the patient’s
chest tightness may be caused by cardiac failure’.

The dynamics of FAFs in this paper are shown as following:

1. adding arguments that interact with the previous FAF.
2. deleting arguments from the previous FAF.
3. adding attack relation which does not appear in the previous FAF.
4. deleting attack relation from the previous FAF.
5. increasing the initial belief degree of arguments.
6. decreasing the initial belief degree of arguments.
7. increasing the initial belief degree of attack relation.
8. decreasing the initial belief degree of attack relation.

Next, when a fuzzy argumentation system is changed by these above cases,
we obtain an updated FAFs. Then, the main task is to find the belief degree
to which arguments are justified. Thus, to cope with the semantics of updated
FAFs, we extend Liao’s division-based approach. By extending Liao’s theory, we
can compute the complete, preferred and grounded semantics which partially
reuses the extensions computed in the previous FAF.

3 Preliminaries

Our work is based on Gödel fuzzy argumentation frameworks [15]. Let’s first
review the notions of fuzzy set and GFAFs.

3.1 Fuzzy Set Theory

We only show some notions of fuzzy set theory [16] that appear in this paper.
Let X be a nonempty set. A fuzzy set (X,S) is determined by its membership

function S: X → [0, 1], such that for each x ∈ X the value S(x) is interpreted
as the grade of membership of x within X. Given some constant set X, we may
denote a fuzzy set (X,S) as S for convenience. A crisp set S′ is a classical set,
namely for any x ∈ X, S′(x) = 0 or S′(x) = 1.
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A fuzzy set S is contained in another fuzzy set S
′
, if ∀x ∈ X, S(x) ≤ S

′
(x),

which is denoted by S ⊆ S
′
.

A fuzzy set S is called a fuzzy point if its support is a single point x ∈ X,
and is denoted by (x, S(x)). We denote all the support of S as Supp(S), where
Supp(S) = {x | S(x) �= 0}.

A fuzzy point (x, S(x)) is contained in a fuzzy set S if it is a subset of S.
The t-norm is a binary operator on [0, 1]. In this paper, we focus on Gödel

t-norm. Gödel t-norm T : [0, 1] × [0, 1] → [0, 1] such that ∀x, y ∈ [0, 1], T (x, y) =
min{x, y}. For simplify, in this paper, we denote ∗ as Gödel t-norm, namely for
any x, y ∈ [0, 1], x ∗ y = T (x, y) = min{x, y}.

3.2 Gödel Fuzzy Argumentation Frameworks

In this paper, an FAF consists of fuzzy arguments and fuzzy attack relation
between the arguments, and Gödel FAF specializes it using Gödel t-norm.

Definition 1. A fuzzy argumentation framework is a tuple 〈A, ρ〉 where A :
Args → (0, 1] and ρ : Args × Args → (0, 1] are total functions. We refer to A
as a fuzzy set of arguments, and ρ as a fuzzy set of attacks, while Args is a crisp
set of arguments.

From [15], we call the elements in A as fuzzy arguments and the elements
in ρ as fuzzy attack. We refer to an FAF using the Gödel t-norm as a GFAF.
It is notable that Gödel t-norm is just a composition operator to combine fuzzy
arguments and fuzzy attack relation. The FAFs explored in this paper all are
GFAFs, and for simplify, we briefly denote GFAF as FAF.

An important distinction between the FAFs and AFs is that the attack rela-
tion may have no influence on the choice of acceptable arguments in FAF. We
borrow the notions of sufficient attack and tolerable attack from [15].

Definition 2. Given two arguments (A, a) and (B, b) as well as a fuzzy attack
relation ((A,B), ρ

AB
), if a ∗ ρ

AB
+ b ≤ 1, then the attack is tolerable, otherwise

it is sufficient.

A sufficient attack weakens the attacked argument. If (A, a) sufficiently
attacks (B, b), then (B, b) is weakened to (B, b′) by (A, a), where b′ = 1−a∗ρ

AB
.

We provide the definition of weakening defend.

Definition 3. Given an FAF = 〈A, ρ〉, a fuzzy set S ⊆ A weakening defends a
fuzzy argument (C, c) in A if for any (B, b) ∈ A there is some (A, a) ∈ S such
that (A, a) weakens (B, b) to (B, b

′
) and (B, b

′
) tolerably attacks (C, c).

We provide an alternate definition of weakening defend.

Definition 4. Given an FAF = (A, ρ), a fuzzy set S ∈ A weakening defends a
fuzzy argument (A, a) ∈ A if for any (B, b) sufficiently attacks (A, a) there exists
(C, c) ∈ S such that c ∗ ρ

CB
= a. Namely there exists (C, c) weakens (B, b) to

(B, 1 − a) and the attack relation from (B, 1 − a) to (A, a) is clearly tolerable.
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It is notable that if the attack relation from A to B is always tolerable, namely
A(A)∗ρ

AB
+A(B) ≤ 1, then the attack relation has no influence in this system.

Thus, for simplify, we don’t show this attack relation in this paper.
We list the extensions semantics in GFAFs as follows.

Definition 5. Given a GFAF = 〈A, ρ〉 and S ⊆ A.
S is a conflict-free set if all attacks between the arguments in S are tolerable.
A conflict-free set S is an admissible extension if S weakening defends each ele-
ment in S.
A conflict-free set S is a complete extension if it contains all the fuzzy arguments
in A that S weakening defends.
An admissible extension is a preferred extension if it is maximal.
A complete extension is a grounded extension if it is minimal.
A conflict-free set is stable if it sufficiently attacks every element in A not in E.

In GFAFs, the grounded extension is unique and it is the least complete
extension. The stable extensions coincide with the preferred extensions.

4 Dynamics of Fuzzy Argumentation Frameworks

In this section, we give the definition of change in FAFs. The notion of change
is cited from [4], we introduce all the changes in FAFs. In [4,13], I denoted the
interactions between arguments under the context of change. I represents the
changed attack relation. For simplicity, we provide the notion of I in FAFs.

– IAr1:Ar2 is the set of interactions related to Ar2 and of the form ((A,B), ρ
AB

),
((B,A), ρ

BA
), or ((B,B′), ρ

BB′ ), in which A ∈ Ar1 and B,B′ ∈ Ar2.
– IAr is a set of interactions between the arguments in Ar, and of the form

((A,A′), ρ
AA′ ), in which A,A′ ∈ Ar.

– I(Ar1,Ar2) is the set of interactions from the arguments in Ar1 to the argu-
ments in Ar2, and of the form ((A,B), ρ

AB
), in which A ∈ Ar1 and B ∈ Ar2.

Analogously, we define a form of a set of fuzzy attack relation within FAF:

– ρAr is a set of attack relation between the arguments in Ar, and of the form
((A,A′), ρ

AA′ ), in which A,A′ ∈ Ar.
– ρ(Ar1,Ar2) is the set of attack relation from the arguments in Ar1 to the

arguments in Ar2, and of the form ((A,B), ρ
AB

), in which A ∈ Ar1 and
B ∈ Ar2.

Definition 6. Given an FAF = 〈A, ρ〉 and Supp(A) = Ar1.

1. adding a set of fuzzy attack relation I
Ar1

(for any (A,B) ∈ Supp(I
Ar1

),
I

Ar1
(A,B) > ρ(A,B) = 0) is a change which is defined by:

〈A, ρ〉 ⊕ I
Ar1

= 〈A, ρ ∪ I
Ar1

〉.
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2. removing a set of fuzzy attack relation I
Ar1

⊆ ρ (for any (A,B) ∈ Supp(I
Ar1

),
I

Ar1
(A,B) = ρ(A,B)) from FAF is a change which is defined by:

〈A, ρ〉 
 I
Ar1

= 〈A, ρ − I
Ar1

〉.
3. adding a set of fuzzy arguments B (Supp(B) = Ar2 and Ar1 ∩Ar2 = ∅) which

interacts with FAF is a change which is defined by:

〈A, ρ〉 ⊕ 〈B, I
Ar1:Ar2

〉 = 〈A ∪ B, ρ ∪ I
Ar1:Ar2

〉.
4. removing arguments B ⊆ A (Supp(B) = Ar2 and ∀A ∈ Ar2, B(A) = A(A))

from FAF is a change which is defined by:

〈A, ρ〉 
 〈B, I
Ar1:Ar2

〉 = 〈A − B, ρ − I
Ar1:Ar2

〉.
5. increasing the initial belief degree of arguments, for simplify, we only increase

the initial degree of an argument. We increase the initial degree of A into a,
namely we use (A, a) replaces (A,A(A)) and a > A(A), it is a change which
is defined by:

〈A, ρ〉 ⊕ (A, a) = 〈A ∪ (A, a), ρ〉.
6. decreasing the initial belief degree of arguments, for simplify, we only decrease

the initial degree of an argument, we first decrease the initial degree of A into
0, and the we increase the degree of A into a, namely, we use (A, a) replaces
(A,A(A)) and a < A(A), it is a change which is defined by:

〈A, ρ〉 
 (A, a) = 〈(A − (A,A(A))) ∪ (A, a), ρ〉.
7. increasing the initial belief degree of attack relation, for simplify, we increase

the initial degree of an attack relation. We increase the initial degree of (A,B)
into ρ′(A,B), namely we use ((A,B), ρ′(A,B)) replaces ((A,B), ρ(A,B)) and
ρ′(A,B) > ρ(A,B), it is a change which is defined by:

〈A, ρ〉 ⊕ ((A,B), ρ′(A,B)) = 〈A, ρ ∪ ((A,B), ρ′(A,B))〉.
8. decreasing the initial belief degree of attack relation, for simplify, we only

decrease the initial degree of an argument, we first decrease the initial degree of
(A,B) into 0, and then we increase the degree of (A,B) into ρ′(A,B), namely,
we use ((A,B), ρ′(A,B)) replaces ((A,B), ρ(A,B)) and ρ′(A,B) < ρ(A,B),
it is a change which is defined by:

〈A, ρ〉 
 ((A,B), ρ′(A,B)) = 〈A, (ρ − ((A,B), ρ(A,B))) ∪ ((A,B), ρ′(A,B))〉.
Although we only increase the initial degree of an argument in (5)–(8), the

case of multiple arguments can be done by iteratively applying the formalism of
(5)–(8).

Next, we will define the dynamics of FAFs. Obviously, all the changes in
Definition 6 are dynamics of FAFs. Additionally, the arbitrary combinations of
1–8 are also the dynamics of FAF. We introduce the dynamics of FAF when
combined with an addition of FAF.
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Definition 7. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 × Ar1 →
(0, 1] are total functions. An addition of FAF is represented as a tuple (B, I

Ar1
∪

I
Ar1:Ar2

), in which B is a set of fuzzy arguments to be added and Ar2 = Supp(B),
I

Ar1
∪ I

Ar1:Ar2
is a set of fuzzy attacks to be added.

In the above definition, we have some explanations about the addition of
FAF. As far as the addition of fuzzy arguments B is considered, for each fuzzy
argument (A, a) ∈ B, there are two cases:

– A /∈ Ar1, then it coincides with the case 3 in Definition 6;
– A ∈ Ar1, but B(A) > A(A), then it coincides with the case 5 in Definition 6.

For each attack relation (A,B) ∈ Supp(I
Ar1

) ∪ Supp(I
Ar1:Ar2

), there are also
two cases:

– (A,B) ∈ Supp(I
Ar1:Ar2

)\Supp(I
Ar1

), then it coincides with the case 1 in
Definition 6;

– (A,B) ∈ Supp(I
Ar1

), but ρ(A,B) < I
Ar1

(A,B), then it coincides with the
case 7 in Definition 6.

From the above definition, an updated FAF with respect to an addition FAF
is defined as follows:

Definition 8. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 × Ar1 →
(0, 1] are total functions. Let (B, I

Ar1
∪ I

Ar1:Ar2
) be an addition. The updated

FAF w.r.t. (B, I
Ar1

∪ I
Ar1:Ar2

) is represented as follows:

〈A⊕, ρ⊕〉 = 〈A, ρ〉 ⊕ (B, I
Ar1

∪ I
Ar1:Ar2

) =def 〈A ∪ B, ρ ∪ I
Ar1

∪ I
Ar1:Ar2

〉

Fig. 1. An example of updated FAF w.r.t. an addition of FAF (Example 1)

We provide an example to illustrate the above definition.

Example 1. Let FAF = 〈{(A, 0.8), (B, 0.6)}, {((A,B), 0.6), ((B,A), 0.7)}〉.
Suppose (B, I

Ar1
∪I

Ar1:Ar2
) be an addition, in which B = {(B, 0.9), (C, 0.8)} and

I
Ar1

∪ I
Ar1:Ar2

= {(A,B), 0.9), ((B,C), 0.7)}. In Fig. 1, the arrows and nodes in
red represent changed arguments and attack relation. Then we obtain an updated
FAF 〈A ∪ B, ρ ∪ I

Ar1
∪ I

Ar1:Ar2
〉 = 〈{(A, 0.8), (B, 0.9), (C, 0.8)}, {((A,B), 0.9),

((B,A), 0.7), ((B,C), 0.7)}〉.
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5 The Argumentation Semantics of Dynamic Fuzzy
Argumentation Frameworks

In this section, we will extend the division-based approach in [13] to the dynamics
of FAFs. In this paper, we only consider the efficient algorithms for calculating
the complete, grounded and preferred semantics.

5.1 The Directionality Principle in FAFs

The division-based approach in [13] is based on the directionality principle, and
thus we first extend the directionality principle into FAFs.

The notion of directionality principle is first provided in [1]. Intuitively, under
Dung’s AF, the justification status of an argument A is only depended on the
status of the defeaters of the argument A (which in turn are affected by their
defeaters and so on), while the arguments which only receive an attack from A
(and in turn those which are attacked by them and so on) should not have any
effect on the status of A. Then Baroni et al. extended the directionality principle
by considering the unattacked set which doesn’t receive attacks from outside.
Here, we extend the directionality principle to FAFs. In FAFs, the belief degree
of each argument is only depended on the belief degrees of attackers (which in
turn are affected by their defeaters and so on).

Definition 9. Given an FAF = (A, ρ), a fuzzy set U ∈ A is unattacked if and
only if there exists no A /∈ Supp(U), B ∈ Supp(U) such that (A,B) ∈ Supp(ρ).
The set of unattacked sets of FAF is denoted as US(FAF ).

We also provide the notion of restricted FAF. Let FAF = 〈A, ρ〉. The restric-
tion of FAF to S ⊆ A is FAF ↓S= 〈S, ρ

S
〉. The directionality criterion can then

be defined, the semantics extensions of an unattacked set are not affected by the
remaining parts of the FAF.

Definition 10. A semantics S satisfies the directionality principle if and only
if for any FAF, ∀U ∈ US(FAF ):

AES(FAF,U) = ES(FAF ↓U ) where AES(FAF,U) = {E ∩ U | E ∈ ES(FAF )}

Similar to Dung’s AF, the complete, grounded and preferred semantics satisfy
the directionality principle in FAF. This is because ∀E ∈ AECO(FAF,U), there
exists no fuzzy argument in E is sufficiently attacked by the fuzzy argument
outside the unattacked set.

5.2 The Basic Theory of the Division-Based Approach in FAF

According to the definition of directionality principle, under a certain argumen-
tation semantics S ∈ {CO,PR,GR}, the justified belief degree of argument is
only affected by its attacker. Thus, as for a certain semantics that is based on the
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directionality principle, if an argument is not affected by the newly added argu-
ment and attack relation, then its justified degree will not change. Therefore,
analogous to Liao’s division-based theory in standard AF, in the updated FAF,
we should identify the unaffected part and the affected part w.r.t. the changed
arguments and attack relation. As far as the unaffected part of the updated FAF
is concerned, its semantics can be conserved to calculate the semantics of the
updated FAF. Thus, the complexity of computing the semantics of the dynam-
ics of FAF might be decreased. Next, we should consider how to calculate the
semantics of the affected part. We will Liao’s approach by extending the notion
of the conditioned part of the updated FAF to handle the problem. Finally, we
combined these two parts of semantics and prove the soundness and complete-
ness of the combined semantics. To cope with these problems, we extend the
Liao’s theory to FAF in the following section.

5.3 Conditioned Fuzzy Argumentation Frameworks

In order to handle the semantics of the updated FAFs, we extend the division-
based approach to FAFs. Firstly, we restate the definition of conditioned FAF.

Definition 11. Given a fuzzy argumentation framework FAF1 = 〈A1, ρ1〉, a
conditioned fuzzy argumentation framework w.r.t. FAF1 is a tuple

CFAF = (〈A2, ρ2〉, (C(A1), ρ(C(Ar1),Ar2)))

in which

– Ar1 = Supp(A1), Ar2 = Supp(A2) and C(Ar1) = Supp(C(A1));
– 〈A2, ρ2〉 is an FAF that is conditioned by C(A1), in which A1 ∩ A2 = ∅;
– C(A1) ⊆ A1 is a nonempty set of fuzzy arguments (called conditioning argu-

ments) that attacks the fuzzy arguments in A2, i.e., ∀A ∈ C(Ar1), ∃B ∈ Ar2,
s.t. (A,B) ∈ Supp(ρ(C(Ar1),Ar2)).

Since 〈A1, ρ1〉 is an FAF that independent of 〈A2, ρ2〉, we can obtain the rea-
sonable set of FAF 1, i.e., the semantics extensions of FAF 1 is directly obtained
by the corresponding criterion. Given a specific extension E ∈ ES(FAF1),
C(A1)[E] is also called a condition of 〈A2, ρ2〉 under the reasonable extension E
of FAF 1. CFAF[E] = (〈A2, ρ2〉, (C(A1)[E], ρ(C(Ar1),Ar2))) is called an assigned
CFAF. The semantics of an assigned CFAF are related to the semantics of con-
ditioning arguments, which are defined as follows:

Definition 12. Let CFAF [E1] = (〈A2, ρ2〉, (C(A1)[E1], ρ(C(Ar1),Ar2))) be an
assigned CFAF w.r.t. FAF1 = 〈A1, ρ1〉, in which E1 ∈ ES(FAF1), S ∈
{CO,PR, GR}.
– A set E ∈ A2 of fuzzy arguments is conflict-free if and only if there exists no

(A, a), (B, b) ∈ E s.t. (A, a) sufficiently attacks (B, b) w.r.t. ρ2.
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– A fuzzy argument (A, a) ∈ A2 is weakening defended by a set E ∈ A2 of
fuzzy arguments under the condition C(A1)[E1] if and only if the following
two conditions hold:

• ∀(B, b) ∈ A2, if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E s.t.
c ∗ ρ

CB
= a, or ∃(D, d) ∈ C(A1), s.t. (D, d) is weakening defended by E1

and d ∗ ρ
DB

= a;
• ∀(B, b) ∈ C(A1), if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E1

s.t. c ∗ ρ
CB

= a.
– A conflict-free set E is admissible if and only if each argument in E is weak-

ening defended by E under the condition C(A1)[E1].

Definition 13. Let CFAF[E1] = (〈A2, ρ2〉, (C(A1)[E1], ρ(C(Ar1),Ar2))) be an
assigned CFAF w.r.t. FAF1 = 〈A1, ρ1〉, in which E1 ∈ ES(FAF1), S ∈
{CO,PR, GR}. Let E ⊆ A2 be an admissible set of fuzzy arguments.

– E is a preferred extension if and only if E is a maximal (w.r.t. set-inclusion)
admissible set of fuzzy arguments.

– E is a complete extension if and only if each argument that is weakening
defended by E under the condition C(A1)[E1] is in E.

– E is a grounded extension if and only if E is the minimal (w.r.t. set-inclusion)
complete extension.

– E is ideal if and only if E is admissible and it is contained in every pre-
ferred set of fuzzy arguments. The ideal extension is the maximal (w.r.t. set-
inclusion) ideal set.

5.4 The Division of Updated Fuzzy Argumentation Framework

The division of an FAF is based on the directionality principle of argumentation
semantics. Notably, in this paper, if the attack relation has no influence in the
FAF, i.e., the attack relation is always tolerable, then we will not show this attack
relation. This can help us simplify the FAF. Given an FAF = 〈A, ρ〉, for each
pair arguments A,B ∈ Ar, if the attack relation from A to B is valid, i.e., A has
influence on B, then we denote B is affected by A. Otherwise, B is independent
of A. Based on this idea, the notion of reachability, as well as the notions of
affected and unaffected between two arguments can be defined as follows:

Definition 14. Let FAF = 〈A, ρ〉, where Supp(A) = Ar. The reachability of
two arguments A,B ∈ Ar w.r.t ρ is recursively defined as follows:

– If there exists (A,B) ∈ Supp(ρ), then B is reachable from A;
– If C is reachable from A, and B is reachable from C, then B is reachable from

A.

Definition 15. Let A,B ∈ Ar, and ρAr be a set of fuzzy attacks within Ar.
We say that under the semantics that satisfies the directionality principle, B is
affected by A, iff B is reachable from A w.r.t. ρAr. Otherwise, B is unaffected by
A w.r.t ρAr. In addition, B is affected by I, iff B is reachable from an argument
w.r.t. I.
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Example 2. Given an FAF with arguments A, B and C:
FAF = ({(A, 0.6), (B, 0.7), (C, 0.8)}, {((A,B), 0.8), ((B,C), 0.6)}).
Here, from that (A, 0.6) sufficiently attacks (B, 0.7) and (B, 0.7) sufficiently
attacks (C, 0.8), we have that B is reachable from A and C is reachable from
B. Hence, C is reachable from A. From Definition 15, C is affected by A and B.

From the above definition, when an addition of FAF 〈B, I
Ar1

∪ I
Ar1:Ar2

〉 is
added to an FAF 〈A, ρ〉, we can identify the subset of A which is affected by B
or I

Ar1
∪ I

Ar1:Ar2
. The initial FAF will be divided into three parts:

– a component of A that is affected by (B, I
Ar1

∪ I
Ar1:Ar2

);
– a component of A that is unaffected by (B, I

Ar1
∪ I

Ar1:Ar2
);

– a subset of the unaffected component that conditions the affected components.

Therefore, we are ready to define the notion of the division of an updated FAF.
Formally, we can provide the division of an updated FAF w.r.t. an addition
(B, I

Ar1
∪ I

Ar1:Ar2
).

Definition 16. Let FAF = 〈A, ρ〉, and Supp(A) = Ar1. Suppose (B, IAr1:Ar2 ∪
IAr1) be an addition to the FAF . The updated FAF 〈A⊕, ρ⊕〉 is divided into three
parts: 〈A⊕

a , ρ⊕
a 〉, 〈A⊕

u , ρ⊕
u 〉, (A⊕

c , ρ⊕
c ) where a, u and c stand for, respectively,

affected, unaffected and conditioning.
A⊕

a = {(A,A⊕(A)) | A ∈ Supp(B) or A is affected by IAr1 ∪ IAr1:Ar2 or A is
affected by an argument C ∈ Supp(A⊕

a ) w.r.t. ρ⊕}
A⊕

u = A⊕ − A⊕
a

A⊕
c = {(A,A⊕(A)) ∈ A⊕

u | ∃B ∈ Supp(Aa) s.t. (A,B) ∈ Supp(ρ⊕) w.r.t. ρ⊕}
ρ⊕
a = ρ⊕ ∩ ρSupp(A⊕

a )

ρ⊕
u = ρ⊕ ∩ ρSupp(A⊕

u )

ρ⊕
c = ρ⊕ ∩ ρ(Supp(A⊕

c ),Supp(A⊕
a ))

From this definition, for a given updated FAF 〈A⊕, ρ⊕〉, A⊕
u coincides with

the arguments that are unaffected by (B, I
Ar1

∪I
Ar1:Ar2

), A⊕
a coincides with the

arguments that are affected by (B, I
Ar1

∪I
Ar1:Ar2

) as well as the fuzzy arguments
in B, A⊕

c coincides with the fuzzy arguments in A⊕
u that condition A⊕

a .
After we have the division of the updated FAF, the next step is to construct

two sub-frameworks of the updated FAF 〈A⊕, ρ⊕〉: the unaffected FAF and the
affected FAF under the condition. The unaffected FAF is 〈A⊕

u , ρ⊕
u 〉. And the con-

ditioned FAF w.r.t. 〈A⊕
u , ρ⊕

u 〉 is constructed according to 〈A⊕
a , ρ⊕

a 〉 and (A⊕
c , ρ⊕

c )
as follows:

CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c ))

From the Definition 16, we have A⊕
c ∩A⊕

a = ∅, A⊕
c ⊆ A⊕

u and ρ⊕
c ⊆ ρ(A⊕

c ,A⊕
a ).

Namely, it satisfies the definition of condition.

Example 3. Let FAF = 〈A, ρ〉, in which A = {(A, 0.8), (B, 0.7), (C, 0.7),
(D, 0.6), (E, 0.8), (F, 0.6), (G, 0.7)} and ρ = {((A,B), 0.8), ((A,C), 0.7),
((C,D), 0.6), ((C,F ), 0.6), ((B,D), 0.9), ((D,E), 0.9), ((E,D), 0.7), ((F,G), 0.7)}.



298 Z. Wang and J. Wu

Fig. 2. An example of the division of a fuzzy argumentation framework (Example 3)

Let (B, IAr1:Ar2 ∪ IAr1) be an addition FAF, in which B = {(D, 0.9), (H, 0.6)},
Ar1 = Supp(A), Ar2 = Supp(B), and IAr1:Ar2 ∪ IAr1 = {((C,F ), 0.9),
((H,B), 0.7)}. The updated FAF is 〈A ∪ B, ρ ∪ I

Ar1
∪ I

Ar1:Ar2
〉, in this example,

the division of the updated FAF is showed as follows:

– 〈A⊕
a , ρ⊕

a 〉 = 〈{(B, 0.7), (D, 0.9), (E, 0.8), (F, 0.6), (G, 0.7), (H, 0.6)}, {((B,D),
0.9), ((D,E), 0.9), ((E,D), 0.7), ((F,G), 0.7), ((H,B), 0.7)}〉;

– 〈A⊕
u , ρ⊕

u 〉 = 〈{(A, 0.8), (C, 0.7)}, {((A,C).0.7)}〉;
– (A⊕

c , ρ⊕
c ) = ({(A, 0.8), (C, 0.7)}, {((A,B), 0.8), ((C,D), 0.6), ((C,F ), 0.9).

CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c )). In this example, it is obvious that 〈A⊕, ρ⊕〉 is
equal to the combination of 〈A⊕

u , ρ⊕
u 〉 and CFAF.

5.5 Computing the Semantics of an Updated Argumentation
Framework Based on the Division

Under semantics S ∈ {CO,PR,GR}, based on the extensions of the two kinds
of sub-frameworks, we will compute the extensions of 〈A⊕, ρ⊕〉 by combining
ES(〈A⊕

u , ρ⊕
u 〉) and ES(CFAF[E]), in which E ∈ ES(〈A⊕

u , ρ⊕
u 〉).

Definition 17. Let 〈A⊕
u , ρ⊕

u 〉 be the unaffected sub-framework of FAF = 〈A, ρ〉
w.r.t an addition (B, I

Ar1
∪ I

Ar1:Ar2
), ES〈A⊕

u , ρ⊕
u 〉 be the set of extensions of

〈A⊕
u , ρ⊕

u 〉, and CFAF[E1] = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c [E1], ρ⊕

c )) be an assigned conditioned
sub-framework w.r.t. E1 ∈ ES〈A⊕

u , ρ⊕
u 〉. The result of combining ES〈A⊕

u , ρ⊕
u 〉 and

ES(CFAF[E1]), ∀E1 ∈ ES〈A⊕
u , ρ⊕

u 〉, to form the set of combined extensions of
(〈A⊕, ρ⊕〉), denoted as CombExtS(〈A⊕, ρ⊕〉), is defined as follows:

CombExtS(〈A⊕, ρ⊕〉) = {E1 ∪ E2 | E1 ∈ ES(〈A⊕
u , ρ⊕

u 〉) ∧ E2 ∈ ES(CFAF[E1])}

Next, we will prove that under each semantic S ∈ {CO,PR,GR}, the exten-
sion of an updated FAF 〈A⊕, ρ⊕〉) coincides with the CombExtS(〈A⊕, ρ⊕〉).
Before the important theorem, we first figure out the relationship between a
complete extension of an updated FAF and a complete extension of an assigned
conditioned sub-framework of it. We have the following lemma:
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Lemma 1. For all E ∈ ECO(〈A⊕, ρ⊕〉), it holds that E ∩A⊕
a ∈ ECO(CFAF[E1]),

in which E1 = E ∩ A⊕
u .

Proof. Since complete semantics satisfies the directionality criterion, and A⊕
u is

an unattacked set, according to Definition 12, it holds that E1 = E ∩ A⊕
u ∈

ECO(〈A⊕
u , ρ⊕

u 〉). According to the definition of assigned CFAF, it can be con-
cluded that E ∩ A⊕

a ⊆ A⊕
a and E ∩ A⊕

a is conflict-free. In order to prove that
E∩A⊕

a is a complete extension of CFAF[E1], we only need to verify the following
two points:

– Every fuzzy argument in E ∩A⊕
a is weakening defended by E ∩A⊕

a under the
condition C(A⊕

u )[E1], which is proved as follows:

Since every fuzzy argument in E ∩ A⊕
a ∈ E is weakening defended by E, it

holds that ∀(A, a) ∈ E ∩ A⊕
a ⊆ A⊕

a , if (B, b) sufficiently attacks (A, a), then
there exists (C, c) in E s.t. c ∗ ρ

CB
= a. From the definition of A⊕

a , (A, a) is
only attacked by the fuzzy argument in A⊕

a and A⊕
c . So, we have the following

two cases:
(i) If (B, b) ∈ A⊕

a , then (B, b) is attacked by A⊕
c or A⊕

a . It holds that ∃(C, c)
in E ∩A⊕

c s.t. c∗ρ
CB

= a or in E ∩A⊕
a s.t. c∗ρ

CB
= a (satisfying the first

condition of weakening defense of fuzzy arguments in an assigned CFAF,
in Definition 12).

(ii) If (B, b) ∈ A⊕
c , since the fuzzy argument in A⊕

c is only attacked by the
fuzzy argument in A⊕

u , we have that ∃(C, c) ∈ E∩A⊕
u = E1 s.t. c∗ρ

CB
= a

(satisfying the second condition of weakening defense of fuzzy arguments
in an assigned CFAF, in Definition 12).

– Every fuzzy argument which is weakening defended by E ∩ A⊕
a under the

condition C(A⊕
u )[E1] is in E ∩ A⊕

a , which is proved as follows:
Since (A, a) in A⊕

a is attacked by A⊕
c or A⊕

a , when (A, a) is weakening
defended by E ∩ A⊕

a under the condition C(A⊕
u )[E1], we have the follow-

ing two cases:
(i) If (B, b) in A⊕

a sufficiently attacks (A, a), then according to the first con-
dition of weakening defense of fuzzy arguments in Definition 12, there
exists (C, c) ∈ E ∩ A⊕

a ⊆ E s.t. c ∗ ρ
CB

= a or (D, d) ∈ E1 ∩ A⊕
c ⊆ E s.t.

d ∗ ρ
DB

= a.
(ii) If (B, b) in A⊕

c sufficiently attacks (A, a), then according to the second
condition of weakening defense of fuzzy arguments in Definition 12, there
exists (C, c) ∈ E1 ⊆ E s.t. c ∗ ρ

CB
= a.

Consequently, for any (B, b) sufficiently attacks (A, a), there exists (C, c) in
E s.t. c ∗ ρ

CB
= a. Therefore, (A, a) is weakening defended by E. According

to the definition of complete extension, every fuzzy argument in A⊕
a ⊆ A⊕

that is weakening defended by E is in E, it holds that (A, a) ∈ E. Since
(A, a) /∈ E1, it holds that (A, a) ∈ E ∩ A⊕

a .

Thus for all E ∈ ECO(〈A⊕, ρ⊕〉), it holds that E ∩ A⊕
a ∈ ECO(CFAF[E1]), in

which E1 = E ∩ A⊕
u . ��
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Based on the Lemma 1, we first show that the combined extensions are
semantics extensions of the updated FAF. The result is formulated in the fol-
lowing theorem.

Theorem 1. Under each argumentation semantics S ∈ {CO,PR,GR}, ∀E ∈
CombExtS(〈A⊕, ρ⊕〉), it holds that E ∈ ES(〈A⊕, ρ⊕〉), in which E = E1 ∪ E2,
an extension by combining E1 ∈ ES(〈A⊕

u , ρ⊕
u 〉) and E2 ∈ ES(CFAF [E1]).

Proof. Under complete semantics, let E = E1 ∪ E2, where E1 ∈ ECO(〈A⊕
u , ρ⊕

u 〉)
and E2 ∈ ECO(CFAF[E1]). In order to prove that E is a complete extension of
〈A⊕, ρ⊕〉, we need proof that: (1) E is conflict-free; (2) every fuzzy argument
in E is weakening defended by E; (3) every fuzzy argument which is weakening
defended by E is in E.

(1) First of all, E1 and E2 include no conflict which is entailed by the hypothesis
E1 ∈ ECO(〈A⊕

u , ρ⊕
u 〉) and E2 ∈ ECO(CFAF[E1]). In addition, ∀(A, a) ∈ E1 ⊆

A⊕
a , ∀(B, b) ∈ E2 ⊆ A⊕

u , it holds that (B, b) does not sufficiently attack
(A, a), for the reason that A⊕

u is unaffected, and it also holds that (A, a)
does not sufficiently attack (B, b). Otherwise, (B, b) is sufficiently attacked
by a conditioning fuzzy argument that is accepted w.r.t. E1. According to the
second condition of acceptability of arguments in an assigned CFAF, (B, b)
is not acceptable w.r.t. E2 under the condition C(A⊕

u )[E1], i.e., (B, b) /∈ E2,
contradicting (B, b) ∈ E2. Thus E is conflict-free.

(2) We need prove that for any (A, a) ∈ E, if (B, b) sufficiently attacks (A, a),
then there exists (C, c) ∈ E s.t. c ∗ ρ

CB
= a, namely there exist elements in

E weakening defends (A, a).
For any (A, a) ∈ E, there are two possible cases: (A, a) ∈ E1 or (A, a) ∈ E2.

(i) If (A, a) ∈ E1, then (A, a) ∈ A⊕
u . Thus (A, a) is only attacked by the fuzzy

arguments in Au. Form the hypothesis E1 ∈ ECO(〈A⊕
u , ρ⊕

u 〉), (A, a) is weak-
ening defended by E1 in 〈A⊕

u , ρ⊕
u 〉. Therefore E weakening defends (A, a).

(ii) If (A, a) ∈ E2, then (A, a) ∈ A⊕
a and (A, a) is weakening defended by E2

under the condition C(A⊕
u )[E1] in CFAF [E1]. If (B, b) sufficiently attacks

(A, a), then (B, b) ∈ A⊕
a or (B, b) ∈ C[A⊕

u ]. Since (A, a) is weakening
defended by E2 under the condition C(A⊕

u )[E1] in CFAF[E1], it holds that:

(a) if (B, b) ∈ C(A⊕
u ), then from Definition 12, ∃(C, c) ∈ E1 s.t. c ∗ ρ

CB
= a.

Namely there exist elements in E weakening defends (A, a).
(b) if (B, b) ∈ A⊕

a , then from Definition 12, ∃(C, c) ∈ E s.t. c ∗ ρ
CB

= a, or
∃(D, d) ∈ C(A1), s.t. (D, d) is weakening defended by E1 and d ∗ ρ

DB
= a.

Since E1 is a complete extension, (D, d) ∈ E1. Thus there exist elements in
E weakening defends (A, a).

From (i) and (ii), it can be concluded that E weakening defends all the fuzzy
arguments in E.

(3) We assume that ∃(A, a) ∈ A⊕ s.t. (A, a) is weakening defended by E, but
(A, a) /∈ E.
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(i) If (A, a) ∈ A⊕
u , then (A, a) is only attacked by the fuzzy arguments in A⊕

u .
Since (A, a) is weakening defended by E, we have that for any (B, b) ∈ Au

sufficiently attacks (A, a), there exists (C, c) ∈ E s.t. c ∗ ρ
CB

= a. From
that the fuzzy arguments in A⊕

u are only attacked by the fuzzy arguments in
A⊕

u , we have that (C, c) ∈ A⊕
u ∩ E = E1. Thus (A, a) is weakening defended

by E1. According to that E1 is a complete extension of 〈A⊕
u , ρ⊕

u 〉, it can be
concluded that (A, a) ∈ E1. But (A, a) /∈ E. Thus it holds that (A, a) /∈ E1.
Contradiction!

(ii) If (A, a) ∈ A⊕
a , then (A, a) is only attacked by the fuzzy arguments in A⊕

a

or C(A⊕
u ). Since (A, a) is weakening defended by E, it holds that:

(a) If (A, a) is sufficiently attacked by a fuzzy argument (B, b) in A⊕
a , then there

exists (C, c) ∈ E s.t. c ∗ ρ
CB

= a. It is obvious that (C, c) ∈ E1 or E2. Thus,
if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E2 s.t. c ∗ ρ

CB
= a, or

∃(D, d) ∈ C(A⊕
u ), s.t. (D, d) is weakening defended by E1 and d ∗ ρ

DB
= a

(satisfying the first condition of weakening defense of fuzzy arguments in
Definition 12).

(b) If (A, a) is sufficiently attacked by a fuzzy argument (B, b) in C(A⊕
u ), then

there exists (C, c) ∈ Au ∩ E = E1 s.t. c ∗ ρ
CB

= a. Thus for any (B, b) ∈
C(A⊕

u ), if (B, b) sufficiently attacks (A, a), then ∃(C, c) ∈ E1 s.t. c∗ρ
CB

= a
(satisfying the second condition of weakening defense of fuzzy arguments in
Definition 12).

Consequently, (A, a) is weakening defended by E2 under the condition
C(A⊕

u )[E1]. Since (A, a) /∈ E, it holds that (A, a) /∈ E2. Contradicting that
E2 is a complete extension of CFAF[E1].

According to (i) and (ii), we have that for any (A, a) which is weakening
defended by E is contained in E. Therefore, every fuzzy argument which is
weakening defended by E is in E.

– Under the preferred semantics, E = E1 ∪ E2 where E1 ∈ EPR(〈A⊕
u , ρ⊕

u 〉)
and E2 ∈ EPR(CFAF[E1]): since a preferred extension is also a complete
extension, we only need to prove that E is a maximal complete extension
(with respect to set inclusion) of 〈A⊕, ρ⊕〉. Assume that E is not a maximal
complete extension. Then there exists a preferred extension S of 〈A⊕, ρ⊕〉
which strictly contains E. We suppose S1 = S ∩ A⊕

u and S2 = S ∩ A⊕
a .

Then from that A⊕
a ∩ A⊕

u = ∅, we have that S1 ∩ S2 = ∅. According to the
directionality principle and the preferred semantics satisfy the directionality
principle, from that A⊕

u is an unattacked set of 〈A⊕, ρ⊕〉, we have that S1 is
a preferred extension of 〈A⊕

u , ρ⊕
u 〉. Thus if E1 � S1, then contradicting that

E1 ∈ EPR(〈A⊕
u , ρ⊕

u 〉). Therefore, E1 = S1, it follows that E2 � S2. Since
a preferred extension is also a complete extension, according to Lemma 1,
it holds that S2 is a complete extension of CFAF[E1]. Contradicting that
E2 is a preferred extension of CFAF[E1]. Consequently, we conclude that
E is a maximal complete extension (i.e., preferred extension). Hence E ∈
EPR(〈A⊕, ρ⊕〉).
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– Under grounded semantics, E = E1 ∪ E2 where E1 ∈ EGR(〈A⊕
u , ρ⊕

u 〉) and
E2 ∈ EGR(CFAF[E1]): since the grounded extension is also a complete exten-
sion, we only need to prove that E is a minimal complete extension (with
respect to set inclusion) of 〈A⊕, ρ⊕〉. Assume that E is not a minimal com-
plete extension. Then there exists a grounded extension S of 〈A⊕, ρ⊕〉 which
is strictly contained by E. We suppose S1 = S ∩ A⊕

u and S2 = S ∩ A⊕
a .

Then from that A⊕
a ∩ A⊕

u = ∅, we have that S1 ∩ S2 = ∅. According to the
directionality principle and the grounded semantics satisfy the directionality
principle, from that A⊕

u is an unattacked set of 〈A⊕, ρ⊕〉, we have that S1

is a grounded extension of 〈A⊕
u , ρ⊕

u 〉. Thus if S1 � E1, then contradicting
that E1 ∈ EGR(〈A⊕

u , ρ⊕
u 〉). Therefore, E1 = S1, it follows that S2 � E2. Since

a grounded extension is also a complete extension, according to Lemma 1,
it holds that S2 is a complete extension of CFAF[E1]. Contradicting that
E2 is a grounded extension of CFAF[E1]. As a result, we may conclude
that E is a minimal complete extension (i.e., grounded extension). Hence
E ∈ EGR(〈A⊕, ρ⊕〉). ��
According to Lemma 1, and Theorem 1, we immediately obtain Lemma 2.

Lemma 2. Under each semantics S ∈ {PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉), it holds
that E ∩ A⊕

a ∈ ES(CFAF[E1]), in which E1 = E ∩ A⊕
u .

Proof. From Lemma 1, under complete semantics, E ∩ A⊕
a ∈ ECO(CFAF[E1]).

As far as preferred semantics are concerned, we need to prove that E ∩ A⊕
a

is a maximal complete extension. If ∃E2 ∈ EPR(CFAF[E1]) and E ∩ A⊕
a � E2,

then it follows that E = (E ∩ A⊕
u ) ∪ (E ∩ A⊕

a ) � E1 ∪ E2. According to
the directionality principle and E1 = E ∩ A⊕

u , we have that E1 is a preferred
extension of 〈A⊕

u , ρ⊕
u 〉. From Theorem 1, we have that E1 ∪ E2 is a preferred

extension of 〈A⊕, ρ⊕〉. This contradicts to the fact that E is a preferred extension
of 〈A⊕, ρ⊕〉. Hence, E ∩ A⊕

a ∈ EPR(CFAF[E1]).
As far as grounded semantics are concerned, we need to prove that E ∩ A⊕

a

is a minimal complete extension. If ∃E2 ∈ EGR(CFAF[E1]) and E2 � E ∩ A⊕
a ,

then it follows that E1 ∪ E2 � (E ∩ A⊕
u ) ∪ (E ∩ A⊕

a ) = E. According to
the directionality principle and E1 = E ∩ A⊕

u , we have that E1 is a grounded
extension of 〈A⊕

u , ρ⊕
u 〉. From Theorem 1, we have E1∪E2 is a grounded extension

of 〈A⊕, ρ⊕〉. This contradicts to the fact that E is a grounded extension of
〈A⊕, ρ⊕〉. Hence, E ∩ A⊕

a ∈ EGR(CFAF[E1]). ��
Based on Lemmas 1 and 2, we show that the semantics extensions are the

combined extension of the updated FAF. The result is formulated in the following
theorem.

Theorem 2. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉), it
holds that E ∈ CombExtS(〈A⊕, ρ⊕〉).
Proof. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A⊕, ρ⊕〉) let E1 =
A⊕

u ∩ E, and E2 = A⊕
a ∩ E. It holds that E = E1 ∪ E2. According to Definition

10, Lemmas 1 and 2, it holds that E1 ∈ ES(〈A⊕
u , ρ⊕

u 〉) and E2 ∈ ES(CFAF[E1]).
According to Definition 17, it holds that E ∈ CombExtS(〈A⊕, ρ⊕〉). ��
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We give an example to illustrate the process of computing the extensions of
an updated FAF by the division method.

Fig. 3. The computation of semantics of an updated fuzzy argumentation framework
(Example 4)

Example 4. Let FAF = 〈A, ρ〉, in which A = {(A, 0.8), (B, 0.7), (C, 0.6),
(D, 0.6), (E, 0.8)} and ρ = {((A,B), 0.8), ((B,A), 0.7), ((B,C), 0.9), ((D,E),
0.7), ((E,D), 0.5)}. Let (B, IAr1:Ar2 ∪ IAr1) be an addition, in which B = {(C,
0.9), (F, 0.7)}, and IAr1:Ar2 ∪ IAr1 = {((A,F ), 0.7), ((C,D), 0.6), ((F,D), 0.8)}.
Then, updated FAF is 〈{(A, 0.8), (B, 0.7), (C, 0.9), (D, 0.6), (E, 0.8), (F, 0.7)},
{((A,B), 0.8), ((B,A), 0.7), ((B,C), 0.8), ((C,D), 0.6), ((D,E), 0.7), ((E,D), 0.5),
((A,F ), 0.7), ((F,D), 0.8)}〉, the division of the updated FAF is showed as follows:

– 〈A⊕
a , ρ⊕

a 〉 = 〈{(C, 0.9), (D, 0.6), (E, 0.8), (F, 0.7)}, {((F,D), 0.8), ((C,D), 0.6),
((D,E), 0.7), ((E,D), 0.5)}〉;

– 〈A⊕
u , ρ⊕

u 〉 = 〈{(A, 0.8), (B, 0.7)}, {((A,B), 0.8), ((B,A), 0.7)}〉;
– (A⊕

c , ρ⊕
c ) = ({(A, 0.8), (B, 0.7)}, {((A,F ), 0.7), ((B,C), 0.8)}).

We can obtain CFAF = (〈A⊕
a , ρ⊕

a 〉, (A⊕
c , ρ⊕

c )). For simplicity, we only discuss
the case under the preferred semantics. And we only consider the limit cases.

Under preferred semantics, EPR(〈A⊕
u , ρ⊕

u 〉) = {E ∩ A⊕
u | E ∈

EPR(〈A⊕, ρ⊕〉)}. Two limit cases are E1 = {(A, 0.8), (B, 0.2)}, E2 =
{(A, 0.3), (B, 0.7)}. Then we get two assigned CFAFs: CFAF[E1],CFAF[E2].
Next, we compute the preferred extensions of CFAF[E1] and CFAF[E2]
according to Definitions 12 and 13. For simplicity, we only show a
preferred extension Ê1 of CFAF[E1] and a preferred extension Ê2 of
CFAF[E2], where Ê1 = {(C, 0.8), (D, 0.4), (E, 0.6), (F, 0.3)} and Ê2 =
{(C, 0.3), (D, 0.3), (E, 0.7), (F, 0.7)}. Finally, we combine the semantics exten-
sions of 〈A⊕

u , ρ⊕
u 〉 and CFAF. From Theorem 1, E1 ∪ Ê1, E2 ∪ Ê2 are two

preferred extensions of the updated FAF.

5.6 The Conclusion About the Dynamics of FAF w.r.t. a Deletion
of FAF

The dynamics of FAF have been explored when attached with an addition of
FAF. In addition, from Definition 6, there exists the case of the deletion of
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FAF. Indeed, we only need to explore the case of the removing of the arguments
and attack relation. This is because the decrease of initial degree of arguments
or attack relation can be regarded as we first remove the arguments or attack
relation, and then we add the new belief degree of arguments or attack relation
to the FAF.

Since the case of deletion of FAFs is similar to the addition of FAFs, we only
list some definitions and theorems as follows and the proof procedure is omitted.
And we only provide the case of the removing of arguments and attack relation.

Definition 18. Let FAF = 〈A, ρ〉, where A : Ar1 → (0, 1] and ρ : Ar1 ×
Ar1 → (0, 1] are total functions. A deletion of FAF is represented as a tuple
(B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
), in which, B ⊆ A is a set of fuzzy arguments to be

removed and Supp(B) = Ar2, ∀A ∈ Ar2, B(A) = A(A), I
Ar1\Ar2

∪I
Ar1\Ar2:Ar2

is
a set of fuzzy attacks to be removed and ∀(A,B) ∈ Supp(I

Ar1\Ar2
∪I

Ar1\Ar2:Ar2
),

I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

(A,B) = ρ(A,B).

Definition 19. Let FAF = 〈A, ρ〉, in which A : Ar1 → (0, 1] and ρ : Ar1 ×
Ar1 → (0, 1] are total functions. Let (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
) be a deletion.

The updated FAF w.r.t. (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

) is represented as follows:

〈A, ρ〉 
 (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

) = 〈A − B, ρ − I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

〉
From the above definition, given an updated FAF 〈A − B, ρ − I

Ar1\Ar2
∪

I
Ar1\Ar2:Ar2

〉 with a deletion of FAF (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

), we can iden-
tify the subset of A which is affected by B or I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
. Therefore,

we are ready to define the concept of the division of an updated FAF. When a
deletion (B, I

Ar1\Ar2
∪I

Ar1\Ar2:Ar2
) is deleted from an FAF = 〈A, ρ〉, the updated

FAF will be divided into three parts:

– a component of A that is affected by (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

);
– a component of A that is unaffected by (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
);

– a subset of the unaffected component that conditions the affected components.

Formally, we can provide the definition of the division of an FAF w.r.t. an addi-
tion (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
).

Definition 20. Let FAF = 〈A, ρ〉, and Supp(A) = Ar1. Suppose
(B, IAr1\Ar2:Ar2 ∪IAr1\Ar2) be a deletion to the FAF . The updated FAF
〈A�, ρ�〉 is divided into three parts: 〈A�

a , ρ�
a 〉, 〈A�

u , ρ�
u 〉, (A�

c , ρ�
c ) where a, u

and c stand for, respectively, affected, unaffected and conditioning.
A�

a = {(A,A�(A)) | A is affected by B w.r.t. IAr1\Ar2:Ar2 or A is affected by
IAr1\Ar2 or A is affected by an argument in Supp(A�

a ) w.r.t. ρ�}
A�

u = A� − A�
a

A�
c = {(A,A�(A)) ∈ A�

u | ∃B ∈ Supp(Aa) s.t. (B,A) ∈ Supp(ρ�) w.r.t. ρ�}
ρ�
a = ρ� ∩ ρSupp(A�

a )

ρ�
u = ρ� ∩ ρSupp(A�

u )

ρ�
c = ρ� ∩ ρ(Supp(A�

c ),Supp(A�
a ))
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In this definition, for a given updated FAF 〈A�, ρ�〉, A�
u coincides with the

arguments that are unaffected by (B, I
Ar1\Ar2

∪ I
Ar1\Ar2:Ar2

), A�
a coincides with

the arguments that are affected by (B, I
Ar1\Ar2

∪I
Ar1\Ar2:Ar2

) A�
c coincides with

the arguments in A�
u that attack A�

a .
After we have the division of the updated FAF, the next step is to construct

two sub-frameworks of the updated FAF 〈A�, ρ�〉: the unaffected FAF and the
affected FAF under the condition. The unaffected FAF is 〈A�

u , ρ�
u 〉. And the

conditioned FAF w.r.t. 〈A�
u , ρ�

a 〉 is constructed as:

CFAF = (〈A�
a , ρ�

a 〉, (A�
c , ρ�

c ))

From Definition 20, we have A�
c ∩ A�

a = ∅, A�
c ⊆ A�

u and ρ�
c ⊆ ρ(A�

c ,A�
a ).

Namely, it satisfies the definition of condition.
Based on the extensions of the two kinds of sub-frameworks, we will compute

the extensions of 〈A�, ρ�〉 by combining ES(〈A�
u , ρ�

u 〉) and ES(CFAF[E]), in
which E ∈ ES(〈A�

u , ρ�
u 〉).

Definition 21. Let 〈A�
u , ρ�

u 〉 be the unaffected sub-framework of FAF = 〈A, ρ〉
w.r.t. a deletion (B, I

Ar1\Ar2
∪ I

Ar1\Ar2:Ar2
), ES〈A�

u , ρ�
u 〉 be the set of extensions

of 〈A�
u , ρ�

u 〉, and CFAF[E1] = (〈A�
a , ρ�

a 〉, (A�
c [E1], ρ�

c )) be an assigned condi-
tioned FAF w.r.t. E1 ∈ ES〈A�

u , ρ�
u 〉. The result of combining ES〈A�

u , ρ�
u 〉 and

ES(CFAF[E1]), ∀E1 ∈ ES〈A�
u , ρ�

u 〉, to form the set of combined extensions of
〈A�, ρ�〉, denoted as CombExtS(〈A�, ρ�〉), is defined as follows:

CombExtS(〈A�, ρ�〉) = {E1 ∪ E2 | E1 ∈ ES(〈A�
u , ρ�

u 〉) ∧ E2 ∈ ES(CFAF[E1])}

Next, we prove that under each semantic S ∈ {CO,PR,GR}, the extension
of an updated framework 〈A�, ρ�〉) coincides with the CombExtS(〈A�, R�〉).
We have the following important conclusion.

Lemma 3. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A�, ρ�〉), it
holds that E ∩ A�

a ∈ ES(CFAF[E1]), in which E1 = E ∩ A�
u .

Based on Lemmas 3, the coincidence of the semantics extensions and the
combined extensions can be showed as follows:

Theorem 3. Under each argumentation semantics S ∈ {CO,PR,GR}, ∀E ∈
CombExtS(〈A�, ρ�〉), it holds that E ∈ ES(〈A�, ρ�〉), in which E = E1 ∪ E2,
an extension by combining E1 ∈ ES(〈A�

u , ρ�
u 〉) and E2 ∈ ES(CFAF[E1]).

Theorem 4. Under each semantics S ∈ {CO,PR,GR}, ∀E ∈ ES(〈A�, ρ�〉), it
holds that E ∈ CombExtS(〈A�, ρ�〉).

6 Conclusion

In this paper, we explore the dynamics of FAFs. The changing of the argument
and attack relation as well as the initial belief degree of the arguments and attack
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relation is an intrinsic property of FAFs with the changes of observations, basic
knowledge, and information.

First, we list the whole changes in the dynamics of FAFs. The dynamics of
FAFs include not only the changes of arguments and attack relation but also the
changes of initial belief degree of arguments and attack relation. Furthermore,
the arbitrary combination of these cases is also a dynamic FAF. Additionally,
our main task is to compute the semantics of the dynamics FAFs. We focus on
the complete, preferred and grounded semantics by extending Liao’s division-
based approach. First, we divide the updated FAF into three parts: affected
FAF, unaffected FAF, conditioned FAF. Then we compute the semantics of the
affected FAFs under the conditioned FAF. Due to the directionality principle,
the semantics of the unaffected AF are directly obtained from the previous FAF.
Thus, this algorithm conserves part of the semantics in the previous FAF.

In the future, we will continue exploring the residual semantics of the dynam-
ics of FAFs, such as stable semantics, ideal semantics. We also want to prove that
a variety of principles are satisfied in FAFs, such as reinstatement principle and
SCC-recursiveness principle. Then we can provide an incremental computation
in FAFs which can efficiently compute the semantics by the topology-related
properties.
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