BILATERAL GRADUAL SEMANTICS FOR WEIGHTED ARGUMENTATION

Zongshun Wang, Yuping Shen

Institute of Logic and Cognition, Department of Philosophy, Sun Yat-sen University wangzsh7@mail2.sysu.edu.cn, shyping@mail.sysu.edu.cn

OVERVIEW

Bilateral gradual semantics for weighted argumentation

- Evaluate argument strength through a **bilateral** perspective
- Propose desirable principles for our semantics
- Provide three **well-behaved** semantics

ARGUMENTATION GRAPH

Abstract argumentation is a well-studied model for evaluating arguments in conflict situations.

An **Argumentation Graph** is a pair $\langle A, \mathcal{R} \rangle$, where

- $\bullet \mathcal{A}$ is a finite set of arguments,
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is an attack relation between arguments.

Extension Semantics:

- Select sets of arguments with desirable principles
- Accepts $\{a, c\}$ or $\{b\}$ but not $\{a, b, c\}$

WEIGHTED ARGUMENTATION GRAPH

A Weighted Argumentation Graph is a triple $G = \langle A, w, \mathcal{R} \rangle$, where

- $\bullet \mathcal{A}$ is a finite set of arguments,
- w is a weighting function from \mathcal{A} to [0,1],
- $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$ is an attack relation between arguments.

Figure. Arguments with basic weights

Gradual semantics assign each argument an acceptability degree, representing its strength, along with a set of desirable principles.

BILATERAL GRADUAL SEMANTICS

Motivation: Argument strength of *positivity* and *negativity* should be separately considered in the evaluative process.

A Bilateral Gradual Semantics (BGS) \mathcal{S} transforms any WAG $\mathbf{G} = \langle \mathcal{A}, w, \mathcal{R} \rangle$ to a function $Deg_{\mathbf{G}}^{\mathcal{S}} \colon \mathcal{A} \to [0, 1] \times [0, 1]$. For any $a \in \mathcal{A}$, $Deg_{\mathbf{G}}^{\mathcal{S}}(a) = (\sigma_{\mathbf{G}}^{+}(a), \sigma_{\mathbf{G}}^{-}(a))$ where $\sigma_{\mathbf{G}}^{+}(a)$ and $\sigma_{\mathbf{G}}^{-}(a)$ represent the acceptability and rejectability degree of a respectively.

Non-reciprocity of BGS

Degree	Source of Strength
	• basic weight
acceptability	• acceptability degree of attackers
	• rejectability degree of attackers
rejectability	• acceptability degree of attackers

Principles for BGS

Dagie itema	Anonymity	Independence	Directionality	
Basic items	Equivalence	Resilience	Proportionality	
Symmetric	A-Neutrality	A-Weakening	A-Counting	
	R-Neutrality	R-Strengthening	R-Counting	
	A-Reinforcement	A-Weakening Soundness	A-Maximality	
	R-Reinforcement	R-Strengthening Soundness	R-Minimality	
Defense	Weakened Defense	Strict Weakened Defense		
Strategies	Quality Precedence	Cardinality Precedence	Compensation	

- A-Counting: acceptability degree decreases as attackers increase
- R-Counting: rejectability degree increases as attackers increase
- Quality Precedence (QP) prioritizes the quality of attackers.
- Cardinality Precedence (CP) prioritizes the quantity of attackers.
- Compensation considers both the quantity and quality of attackers.

FOUNDATIONS FOR SEMANTICS

Quality Precedence	$f^{i}(a) = \frac{w(a)}{1 + \max_{b \in Att(a)} \frac{f^{i-1}(b)}{1 + g^{i-1}(b)}}$
Iterative Function	$g^{i}(a) = \frac{\max_{b \in Att(a)} f^{i-1}(b)}{1 + \max_{b \in Att(a)} f^{i-1}(b)}$
Cardinality Precedence	$f^{i}(a) = \frac{w(a)}{1 + Att^{*}(a) + \frac{1}{n} \cdot \sum_{b \in Att^{*}(a)} \frac{f^{i-1}(b)}{1 + g^{i-1}(b)}}$
Iterative Function	$g^{i}(a) = \frac{ Att^{*}(a) + \frac{1}{n} \cdot \sum_{b \in Att^{*}(a)} f^{i-1}(b)}{1 + Att^{*}(a) + \frac{1}{n} \cdot \sum_{b \in Att^{*}(a)} f^{i-1}(b)}$
Compensation	$f^{i}(a) = \frac{w(a)}{1 + Att^{*}(a) + \sum_{b \in Att^{*}(a)} \frac{f^{i-1}(b)}{1 + g^{i-1}(b)}}$
Iterative Function	$g^{i}(a) = \frac{ Att^{*}(a) + \sum_{b \in Att^{*}(a)} f^{i-1}(b)}{1 + Att^{*}(a) + \sum_{b \in Att^{*}(a)} f^{i-1}(b)}$

Theorem: All iterative functions converge as i approaches ∞ .

SEMANTICS

Three semantics for Quality Precedence, Cardinality Precedence, and Compensation, respectively.

- AR-max-based Semantics is defined as the limit of Quality Precedence Iterative Function.
- AR-card-based Semantics is defined as the limit of Cardinality Precedence Iterative Function.
- AR-hybrid-based Semantics is defined as the limit of Compensation Iterative Function.

	ARM	ARC	ARH
Anonymity	√	√	√
Independence	√	√	√
Directionality	√	√	√
Equivalence	√	√	√
Resilience	√	√	√
Proportionality	√	√	√
A-Neutrality	√	√	√
R-Neutrality	√	√	√
A-Maximality	√	√	√
R-Minimality	√	√	√
A-Weakening	√	√	\checkmark
R-Strengthening	√	√	√
A-Weakening soundness	√	√	√
R-Strengthening soundness	√	√	√
A-Counting	_	√	√
R-Counting	_	√	√
A-Reinforcement	_	√	√
R-Reinforcement	_	√	√
Weakened Defense	√	√	√
Strict Weakened Defense	_	√	√
Quality Precedence	√	_	_
Cardinality Precedence	_	√	_
Compensation	_	_	√

Reference

Dung, P.M. 1995. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artificial intelligence*

Amgoud, L.; Ben-Naim, J.; Doder, D.; and Vesic, S. 2017. Acceptability Semantics for Weighted Argumentation Frameworks. *IJCAI*

Cacioppo, J.; Gardner, W.; and Berntson, G. 1997. Beyond bipolar conceptualizations and measures: The case of attitudes and evaluative space. *Personality and Social Psychology Review*